Skip to main content
Log in

Fractional-order Bessel functions with various applications

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

We introduce fractional-order Bessel functions (FBFs) to obtain an approximate solution for various kinds of differential equations. Our main aim is to consider the new functions based on Bessel polynomials to the fractional calculus. To calculate derivatives and integrals, we use Caputo fractional derivatives and Riemann-Liouville fractional integral definitions. Then, operational matrices of fractional-order derivatives and integration for FBFs are derived. Also, we discuss an error estimate between the computed approximations and the exact solution and apply it in some examples. Applications are given to three model problems to demonstrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Agarwal, D. O’Regan, S. Hristova: Stability of Caputo fractional differential equations by Lyapunov functions. Appl. Math., Praha 60 (2015), 653–676.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. T. Baillie: Long memory processes and fractional integration in econometrics. J. Econom. 73 (1996), 5–59.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. H. Bhrawy, Y. Alhamed, D. Baleanu, A. Al-Zahrani: New spectral techniques for systems of fractional differential equations using fractional-order generalized Laguerre orthogonal functions. Fract. Calc. Appl. Anal. 17 (2014), 1138–1157.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. W. Bohannan: Analog fractional order controller in temperature and motor control applications. J. Vib. Control 14 (2008), 1487–1498.

    Article  MathSciNet  Google Scholar 

  5. M. Caputo: Linear models of dissipation whose Q is almost frequency independent. II. Geophys. J. R. Astron. Soc. 13 (1967), 529–539.

    Article  Google Scholar 

  6. Y. Chen, Y. Sun, L. Liu: Numerical solution of fractional partial differential equations with variable coefficients using generalized fractional-order Legendre functions. Appl. Math. Comput. 244 (2014), 847–858.

    MathSciNet  MATH  Google Scholar 

  7. X. Chen, L. Wang: The variational iteration method for solving a neutral functional differential equation with proportional delays. Comput. Math. Appl. 59 (2010), 2696–2702.

    Article  MathSciNet  MATH  Google Scholar 

  8. H. Dehestani, Y. Ordokhani, M. Razzaghi: Fractional-order Legendre-Laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336 (2018), 433–453.

    MathSciNet  MATH  Google Scholar 

  9. H. Dehestani, Y. Ordokhani, M. Razzaghi: On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay. Numer. Linear Algebra Appl. 26 (2019), Article ID e2259, 29 pages.

    Article  MathSciNet  Google Scholar 

  10. H. Dehestani, Y. Ordokhani, M. Razzaghi: Application of the modified operational matrices in multiterm variable-order time-fractional partial differential equations. To appear in Math. Methods Appl. Sci., 18 pages.

  11. E. H. Doha, A. H. Bhrawy, D. Baleanu, R. M. Hafez: A new Jacobi rational-Gauss collocation method for numerical solution of generalized pantograph equations. Appl. Numer. Math. 77 (2014), 43–54.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Engheta: On fractional calculus and fractional multipoles in electromagnetism. IEEE Trans. Antennas Propag. 44 (1996), 554–566.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Grosswald: Bessel Polynomials. Lecture Notes in Mathematics 698, Springer, Berlin, 1978.

    Book  MATH  Google Scholar 

  14. J. He: Approximate analytical solution for seepage flow with fractional derivatives in porous media. Comput. Methods Appl. Mech. Eng. 167 (1998), 57–68.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. He: Nonlinear oscillation with fractional derivative and its applications. Proceedings of the International Conference on Vibrating Engineering, Dalian, 1998, pp. 288–291.

  16. M. A. Iqbal, U. Saeed, S. T. Mohyud-Din: Modified Laguerre wavelets method for delay differential equations of fractional-order. Egyptian J. Basic Appl. Sci. 2 (2015), 50–54.

    Article  Google Scholar 

  17. H. Jafari, S. A. Yousefi, M. A. Firoozjaee, S. Momani, C. M. Khalique: Application of Legendre wavelets for solving fractional differential equations. Comput. Math. Appl. 62 (2011), 1038–1045.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Kazem: Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16 (2013), 3–11.

    MathSciNet  MATH  Google Scholar 

  19. S. Kazem, S. Abbasbandy, S. Kumar: Fractional-order Legendre functions for solving fractional-order differential equations. Appl. Math. Modelling 37 (2013), 5498–5510.

    Article  MathSciNet  MATH  Google Scholar 

  20. E. Kreyszig: Introductory Functional Analysis with Applications. John Wiley & Sons, New York, 1978.

    MATH  Google Scholar 

  21. P. Kumar, O. P. Agrawal: An approximate method for numerical solution of fractional differential equations. Signal Process. 86 (2006), 2602–2610.

    Article  MATH  Google Scholar 

  22. Y. Li: Solving a nonlinear fractional differential equation using Chebyshev wavelets. Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 2284–2292.

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Y. Li, B. Y. Wu: A continuous method for nonlocal functional differential equations with delayed or advanced arguments. J. Math. Anal. Appl. 409 (2014), 485–493.

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Liu, V. Anh, I. Turner: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166 (2004), 209–219.

    Article  MathSciNet  MATH  Google Scholar 

  25. F. Mainardi: Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics. CISM Courses and Lectures 378, Springer, Vienna, 1997, pp. 291–348.

    Chapter  MATH  Google Scholar 

  26. B. Mandelbrot: Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory 13 (1967), 289–298.

    Article  MATH  Google Scholar 

  27. K. S. Miller, B. Ross: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York, 1993.

    MATH  Google Scholar 

  28. K. Moaddy, S. Momani, I. Hashim: The non-standard finite difference scheme for linear fractional PDEs in fluid mechanics. Comput. Math. Appl. 61 (2011), 1209–1216.

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Momani, K. Al-Khaled: Numerical solutions for systems of fractional differential equations by the decomposition method. Appl. Math. Comput. 162 (2005), 1351–1365.

    MathSciNet  MATH  Google Scholar 

  30. S. Momani, Z. Odibat: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207 (2007), 96–110.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. B. Oldham, J. Spanier: The Fractional Calculus. Theory and Applications of Differentiation and Integration to Arbitrary Order. Mathematics in Science and Engineering 111, Academic Press, New York, 1974.

    MATH  Google Scholar 

  32. K. Parand, M. Nikarya: Application of Bessel functions for solving differential and integro-differential equations of the fractional order. Appl. Math. Modelling 38 (2014), 4137–4147.

    Article  MathSciNet  MATH  Google Scholar 

  33. K. Parand, M. Nikarya, J. A. Rad: Solving non-linear Lane-Emden type equations using Bessel orthogonal functions collocation method. Celest. Mech. Dyn. Astron. 116 (2013), 97–107.

    Article  MathSciNet  Google Scholar 

  34. I. Petráš: Fractional-order feedback control of a DC motor. J. Electr. Eng. 60 (2009), 117–128.

    Google Scholar 

  35. I. Podlubny: Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering 198, Academic Press, San Diego, 1999.

    MATH  Google Scholar 

  36. P. Rahimkhani, Y. Ordokhani, E. Babolian: Fractional-order Bernoulli wavelets and their applications. Appl. Math. Modelling 40 (2016), 8087–8107.

    Article  MathSciNet  Google Scholar 

  37. P. Rahimkhani, Y. Ordokhani, E. Babolian: Numerical solution of fractional pantograph differential equations by using generalized fractional-order Bernoulli wavelet. J. Comput. Appl. Math. 309 (2017), 493–510.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. J. Rivlin: An Introduction to the Approximation of Functions. Dover Books on Advanced Mathematics, Dover Publications, New York, 1981.

    MATH  Google Scholar 

  39. U. Saeed, M. ur Rehman, M. A. Iqbal: Modified Chebyshev wavelet methods for fractional delay-type equations. Appl. Math. Comput. 264 (2015), 431–442.

    MathSciNet  MATH  Google Scholar 

  40. H. Saeedi, M. M. Moghadam, N. Mollahasani, G. N. Chuev: A CAS wavelet method for solving nonlinear Fredholm integro-differential equations of fractional order. Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1154–1163.

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Tohidi, H. Saberi Nik: A Bessel collocation method for solving fractional optimal control problems. Appl. Math. Modelling 39 (2015), 455–465.

    Article  MathSciNet  MATH  Google Scholar 

  42. W.-S. Wang, S.-F. Li: On the one-leg θ-methods for solving nonlinear neutral functional differential equations. Appl. Math. Comput. 193 (2007), 285–301.

    MathSciNet  Google Scholar 

  43. F. Yin, J. Song, Y. Wu, L. Zhang: Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions. Abstr. Appl. Anal. 2013 (2013), Article ID 562140, 13 pages.

    MathSciNet  MATH  Google Scholar 

  44. L. Yuanlu, Z. Weiwei: Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations. Appl. Math. Comput. 216 (2010), 2276–2285.

    MathSciNet  MATH  Google Scholar 

  45. Ş. Yüzbaşi: Bessel Polynomial Solutions of Linear Differential, Integral and Integro-Differential Equations. M.Sc. Thesis, Graduate School of Natural and Applied Sciences, Mugla University, Kötekli, 2009.

  46. Ş. Yüzbaşi: Numerical solutions of fractional Riccati type differential equations by means of the Bernstein polynomials. Appl. Math. Comput. 219 (2013), 6328–6343.

    MathSciNet  MATH  Google Scholar 

  47. Ş. Yüzbaşi, N. Şahin, M. Sezer: Numerical solutions of systems of linear Fredholm integro-differential equations with Bessel polynomial bases. Comput. Math. Appl. 61 (2011), 3079–3096.

    Article  MathSciNet  MATH  Google Scholar 

  48. X. Zhang, B. Tang, Y. He: Homotopy analysis method for higher-order fractional integro-differential equations. Comput. Math. Appl. 62 (2011), 3194–3203.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Ordokhani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehestani, H., Ordokhani, Y. & Razzaghi, M. Fractional-order Bessel functions with various applications. Appl Math 64, 637–662 (2019). https://doi.org/10.21136/AM.2019.0279-18

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2019.0279-18

Keywords

MSC 2010

Navigation