Skip to main content
Log in

Algebraic preconditioning for Biot-Barenblatt poroelastic systems

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

Poroelastic systems describe fluid flow through porous medium coupled with deformation of the porous matrix. In this paper, the deformation is described by linear elasticity, the fluid flow is modelled as Darcy flow. The main focus is on the Biot-Barenblatt model with double porosity/double permeability flow, which distinguishes flow in two regions considered as continua. The main goal is in proposing block diagonal preconditionings to systems arising from the discretization of the Biot-Barenblatt model by a mixed finite element method in space and implicit Euler method in time and estimating the condition number for such preconditioning. The investigation of preconditioning includes its dependence on material coefficients and parameters of discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. N. Arnold, R. S. Falk, R. Winther: Preconditioning in H(div) and applications. Math. Comput. 66 (1997), 957–984.

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Axelsson, R. Blaheta: Preconditioning of matrices partitioned in 2 × 2 block form: eigenvalue estimates and Schwarz DD for mixed FEM. Numer. Linear Algebra Appl. 17 (2010), 787–810.

    Article  MATH  Google Scholar 

  3. O. Axelsson, R. Blaheta, P. Byczanski: Stable discretization of poroelasticity problems and efficient preconditioners for arising saddle point type matrices. Comput. Visual Sci. 15 (2012), 191–207.

    Article  MathSciNet  MATH  Google Scholar 

  4. O. Axelsson, R. Blaheta, T. Luber: Preconditioners for mixed FEM solution of stationary and nonstationary porous media flow problems. Large-Scale Scientific Computing. Int. Conf. Lecture Notes in Comput. Sci. 9374, Springer, Cham, 2015, pp. 3–14.1

    Google Scholar 

  5. M. Bai, D. Elsworth, J.-C. Roegiers: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resources Research 29 (1993), 1621–1633.

    Article  Google Scholar 

  6. G. I. Barenblatt, I. P. Zheltov, I. N. Kochina: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). PMM, J. Appl. Math. Mech. 24 (1961), 1286–1303 (In English. Russian original.); translation from Prikl. Mat. Mekh. 24 (1960), 852–864.

    Article  MATH  Google Scholar 

  7. M. Benzi, G. H. Golub, J. Liesen: Numerical solution of saddle point problems. Acta Numerica 14 (2005), 1–137.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Boffi, F. Brezzi, M. Fortin: Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics 44, Springer, Berlin, 2013.

    Google Scholar 

  9. Decovalex 2019 project, Task G: EDZ evolution in sparsely fractured competent rock. http://decovalex.org/task-g.html.

  10. H. C. Elman, D. J. Silvester, A. J. Wathen: Finite Elements and Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics. Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2014.

    Google Scholar 

  11. H. H. Gerke, M. T. Van Genuchten: A dual-porosity model for simulating the preferential movement of water and solutes in structured porous media. Water Resources Research 29 (1993), 305–319.

    Article  Google Scholar 

  12. P. R. Halmos: Finite-Dimensional Vector Spaces, The University Series in Undergraduate Mathematics, D. van Nostrand Company, Princeton, 1958.

    MATH  Google Scholar 

  13. V. E. Henson, U. M. Yang: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41 (2002), 155–177.

    Article  MathSciNet  MATH  Google Scholar 

  14. Q. Hong, J. Kraus: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Available at arXiv:1706.00724 (2017), 20 pages.

    Google Scholar 

  15. S. H. S. Joodat, K. B. Nakshatrala, R. Ballarini: Modeling flow in porous media with double porosity/permeability: A stabilized mixed formulation, error analysis, and numerical solutions. Available at arXiv:1705.08883 (2017), 49 pages.

    Google Scholar 

  16. A. E. Kolesov, P. N. Vabishchevich: Splitting schemes with respect to physical processes for double-porosity poroelasticity problems. Russ. J. Numer. Anal. Math. Model. 32 (2017), 99–113.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Kraus, M. Lymbery, S. Margenov: Auxiliary space multigrid method based on additive Schur complement approximation. Numer. Linear Algebra Appl. 22 (2015), 965–986.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Kraus, S. Margenov: Robust Algebraic Multilevel Methods and Algorithms. Radon Series on Computational and Applied Mathematics 5, Walter de Gruyter, Berlin, 2009.

    Google Scholar 

  19. J. M. Nordbotten, T. Rahman, S. I. Repin, J. Valdman: A Posteriori error estimates for approximate solutions of the Barenblatt-Biot poroelastic model. Comput. Methods Appl. Math. 10 (2010), 302–314.

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Rodrigo, X. Hu, P. Ohm, J. H. Adler, F. J. Gaspar, L. Zikatanov: New stabilized discretizations for poroelasticity and the Stokes’ equations. Available at arXiv:1706.05169 (2017), 20 pages.

    Google Scholar 

  21. J. E. Warren, P. J. Root: The behavior of naturally fractured reservoirs. SPE J. 3 (1963), 245–255.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radim Blaheta.

Additional information

The work was done within the projects LD15105 “Ultrascale computing in geo-sciences” and LQ1602 “IT4Innovations excellence in science” supported by the Ministry of Education, Youth and Sports of the Czech Republic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blaheta, R., Luber, T. Algebraic preconditioning for Biot-Barenblatt poroelastic systems. Appl Math 62, 561–577 (2017). https://doi.org/10.21136/AM.2017.0179-17

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.21136/AM.2017.0179-17

Keywords

MSC 2010

Navigation