Skip to main content
Log in

Robust Approximation of Generalized Biot-Brinkman Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The generalized Biot-Brinkman equations describe the displacement, pressures and fluxes in an elastic medium permeated by multiple viscous fluid networks and can be used to study complex poromechanical interactions in geophysics, biophysics and other engineering sciences. These equations extend on the Biot and multiple-network poroelasticity equations on the one hand and Brinkman flow models on the other hand, and as such embody a range of singular perturbation problems in realistic parameter regimes. In this paper, we introduce, theoretically analyze and numerically investigate a class of three-field finite element formulations of the generalized Biot-Brinkman equations. By introducing appropriate norms, we demonstrate that the proposed finite element discretization, as well as an associated preconditioning strategy, is robust with respect to the relevant parameter regimes. The theoretical analysis is complemented by numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available in the GitHub repository, https://github.com/MiroK/biot-brinkman-paper.

Notes

  1. The reason for not prescribing the complete displacement vector as a boundary condition are limitations in the PCPATCH framework which was used to implement the multigrid algorithm. In particular, the software currently lacks support for exterior facet integrals (see e.g. [3]) which are required with BDM elements to weakly enforce conditions on the tangential displacement by the Nitsche method.

  2. The comparison is done in terms of the aggregate of the setup time of the linear system, the preconditioner and the run time of the Krylov solver.

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Arnold, D.N., Falk, R.S., Winther, R.: Multigrid in H(div) and H(curl). Numer. Math. 85, 197–217 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Aznaran, F., Kirby, R., Farrell, P.: Transformations for Piola-mapped elements, arXiv preprint arXiv:2110.13224, (2021)

  4. Bai, M., Elsworth, D., Roegiers, J.-C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993)

    Google Scholar 

  5. Barenblatt, G., Zheltov, G., Kochina, I.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J. Appl. Math. Mech. 24(5), 1286–1303 (1960)

    MATH  Google Scholar 

  6. Barnafi, N., Zunino, P., Dedè, L., Quarteroni, A.: Mathematical analysis and numerical approximation of a general linearized poro-hyperelastic model. Comput. Math. Appl. 91, 202–228 (2021)

    MathSciNet  MATH  Google Scholar 

  7. Biot, M.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    MATH  Google Scholar 

  8. Biot, M.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26, 182–185 (1955)

    MathSciNet  MATH  Google Scholar 

  9. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, vol. 44. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  10. Brezzi, F.: On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 8 (1974), pp. 129–151

  11. Brinkman, H.C.: A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Flow Turbul. Combust. 1, 27–34 (1949)

    MATH  Google Scholar 

  12. Burtschell, B., Moireau, P., Chapelle, D.: Numerical analysis for an energy-stable total discretization of a poromechanics model with inf-sup stability. Acta Math. Appl. Sin. 35, 28–53 (2019)

    MathSciNet  MATH  Google Scholar 

  13. Chabiniok, R., Wang, V.Y., Hadjicharalambous, M., Asner, L., Lee, J., Sermesant, M., Kuhl, E., Young, A.A., Moireau, P., Nash, M.P., et al.: Multiphysics and multiscale modelling, data-model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface focus 6, 20150083 (2016)

    Google Scholar 

  14. Chapelle, D., Moireau, P.: General coupling of porous flows and hyperelastic formulations–from thermodynamics principles to energy balance and compatible time schemes. Europ. J. Mech. B Fluids 46, 82–96 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Chen, S., Hong, Q., Xu, J., Yang, K.: Robust block preconditioners for poroelasticity. Comput. Methods Appl. Mech. Eng. 369, 113229 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Chou, D., Vardakis, J., Guo, L., Tully, B., Ventikos, Y.: A fully dynamic multi-compartmental poroelastic system: application to aqueductal stenosis. J. Biomech. 49, 2306–2312 (2016)

    Google Scholar 

  17. Darcy, H.: Les fontaines publiques de la ville de Dijon: exposition et application..., Victor Dalmont, 1856

  18. Eliseussen, E., Rognes, M.E., Thompson, T.B.: A-posteriori error estimation and adaptivity for multiple-network poroelasticity, arXiv preprint arXiv:2111.13456, (2021)

  19. Farrell, P.E., Knepley, M.G., Mitchell, L., Wechsung, F.: PCPATCH: software for the topological construction of multigrid relaxation methods. ACM Trans. Math. Softw. 47(3), 1–22 (2021)

    MathSciNet  MATH  Google Scholar 

  20. Guo, L., Vardakis, J., Lassila, T., Mitolo, M., Ravikumar, N., Chou, D., Lange, M., Sarrami-Foroushani, A., Tully, B., Taylor, Z., Varma, S., Venneri, A., Frangi, A., Ventikos, Y.: Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface Focus 8, 20170019 (2018)

    Google Scholar 

  21. Hansbo, P., Larson, M.: Discontinuous Galerkin and the Crouzeix-Raviart element application to elasticity. ESAIM Math. Modell. Numer. Anal. 37(1), 63–72 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Hong, Q., Kraus, J.: Uniformly stable discontinuous Galerkin discretization and robust iterative solution methods for the Brinkman problem. SIAM J. Numer. Anal. 54, 2750–2774 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Hong, Q., Kraus, J.: Parameter-robust stability of classical three-field formulation of Biot’s consolidation model. Electron. Trans. Numer. Anal. 48, 202–226 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Hong, Q., Kraus, J., Lymbery, M., Philo, F.: Conservative discretizations and parameter-robust preconditioners for Biot and multiple-network flux-based poroelasticity models. Numer. Linear Algebra Appl. 26, e2242 (2019)

    MathSciNet  MATH  Google Scholar 

  25. Hong, Q., Kraus, J., Lymbery, M., Philo, F.: Parameter-robust Uzawa-type iterative methods for double saddle point problems arising in Biot’s consolidation and multiple-network poroelasticity models. Math. Models Methods Appl. Sci. 30, 2523–2555 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Hong, Q., Kraus, J., Lymbery, M., Philo, F.: A new framework for the stability analysis of perturbed saddle-point problems and applications, arXiv:2103.09357v3 [math.NA], (2021)

  27. Hong, Q., Kraus, J., Lymbery, M., Wheeler, M.F.: Parameter-robust convergence analysis of fixed-stress split iterative method for multiple-permeability poroelasticity systems. Multiscale Model. Simulat. 18, 916–941 (2020)

    MathSciNet  MATH  Google Scholar 

  28. Hong, Q., Kraus, J., Xu, J., Zikatanov, L.: A robust multigrid method for discontinuous Galerkin discretizations of Stokes and linear elasticity equations. Numer. Math. 132, 23–49 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Hong, Q., Wang, F., Wu, S., Xu, J.: A unified study of continuous and discontinuous Galerkin methods. SCI. CHINA Math. 62, 1–32 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Howell, J.S., Walkington, N.J.: Inf-sup conditions for twofold saddle point problems. Numer. Math. 118, 663 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Kedarasetti, R., Drew, P.J., Costanzo, F.: Arterial vasodilation drives convective fluid flow in the brain: a poroelastic model, bioRxiv, (2021)

  32. Khaled, M., Beskos, D., Aifantis, E.: On the theory of consolidation with double porosity. 3. a finite-element formulation, (1984), pp. 101–123

  33. Kraus, J., Lederer, P.L., Lymbery, M., Schöberl, J.: Uniformly well-posed hybridized discontinuous Galerkin/hybrid mixed discretizations for Biot’s consolidation model. Comput. Methods Appl. Mech. Engrg. 384, 113991 (2021)

    MathSciNet  MATH  Google Scholar 

  34. Kumar, S., Oyarzúa, R., Ruiz-Baier, R., Sandilya, R.: Conservative discontinuous finite volume and mixed schemes for a new four-field formulation in poroelasticity. ESAIM Math. Model. Numer. Anal. 54, 273–299 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Lee, J., Mardal, K.-A., Winther, R.: Parameter-robust discretization and preconditioning of Biot’s consolidation model. SIAM J. Sci. Comput. 39, A1–A24 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Lee, J.J., Piersanti, E., Mardal, K.-A., Rognes, M.E.: A mixed finite element method for nearly incompressible multiple-network poroelasticity. SIAM J. Sci. Comput. 41, A722–A747 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Mardal, K.-A., Rognes, M.E., Thompson, T.B.: Accurate discretization of poroelasticity without Darcy stability. BIT Numer. Math. 61(3), 941–976 (2021)

    MATH  Google Scholar 

  38. Nash, M.P., Hunter, P.J.: Computational mechanics of the heart. J. Elast. Phys. Sci. solids 61, 113–141 (2000)

    MATH  Google Scholar 

  39. Piersanti, E., Lee, J.J., Thompson, T., Mardal, K.-A., Rognes, M.E.: Parameter robust preconditioning by congruence for multiple-network poroelasticity. SIAM J. Sci. Comput. 43, B984–B1007 (2021)

    MathSciNet  MATH  Google Scholar 

  40. Rajagopal, K.R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17, 215–252 (2007)

    MathSciNet  MATH  Google Scholar 

  41. Rathgeber, F., Ham, D.A., Mitchell, L., Lange, M., Luporini, F., Mcrae, A.T.T., Bercea, G.-T., Markall, G.R., Kelly, P.H.J.: Firedrake: automating the finite element method by composing abstractions. ACM Trans. Math. Softw. 43(3), 1–27 (2016)

    MathSciNet  MATH  Google Scholar 

  42. Rodrigo, C., Hu, X., Ohm, P., Adler, J.H., Gaspar, F.J., Zikatanov, L.: New stabilized discretizations for poroelasticity and the Stokes’ equations. Comput. Methods Appl. Mech. Eng. 341, 467–484 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Showalter, R.: Poroelastic filtration coupled to Stokes flow, Lecture Notes in Pure and Appl. Math. 242, 229–241 (2010)

    Google Scholar 

  44. Støverud, K.H., Alnæs, M., Langtangen, H.P., Haughton, V., Mardal, K.-A.: Poro-elastic modeling of Syringomyelia-a systematic study of the effects of pia mater, central canal, median fissure, white and gray matter on pressure wave propagation and fluid movement within the cervical spinal cord. Comput. Methods Biomech. Biomed. Eng. 19, 686–698 (2016)

    Google Scholar 

  45. Tully, B., Ventikos, Y.: Cerebral water transport using multiple-network poroelastic theory: application to normal pressure hydrocephalus. J. Fluid Mech. 667, 188–215 (2011)

    MathSciNet  MATH  Google Scholar 

  46. Vardakis, J., Chou, D., Tully, B., Hung, C., Lee, T., Tsui, P., Ventikos, Y.: Investigating cerebral oedema using poroelasticity. Med. Eng. Phys. 38, 48–57 (2016)

    Google Scholar 

  47. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Transp. Porous Med. 1, 3–25 (1986)

    Google Scholar 

  48. Wilson, R., Aifantis, E.: On the theory of consolidation with double porosity. Int. J. Eng. Sci. 20, 1009–1035 (1982)

    MATH  Google Scholar 

Download references

Acknowledgements

J. Kraus and M. Lymbery acknowledge the support of this work by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the project “Physics-oriented solvers for multicompartmental poromechanics" under grant number 456235063. M. Kuchta acknowledges support from the Research Council of Norway (RCN) grant No 303362. K. A. Mardal acknowledges support from the Research Council of Norway, grant 300305 and 301013. M. E. Rognes has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement 714892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingguo Hong.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A. Components of Multigrid Preconditioner

Appendix A. Components of Multigrid Preconditioner

In this section we report numerical experiments demonstrating robustness of geometric multigrid preconditioners for blocks \(\mathcal {B}_{\varvec{u}}\) and \(\mathcal {B}_{\varvec{v}}\) of the Biot-Brinkman preconditioner (4.12). Adapting the unit square geometry and the setup of boundary conditions from Sect. 5.3 we investigate performance of the preconditioners by considering boundedness of the (preconditioned) conjugate gradient (CG) iterations. In the following, the initial vector is set to 0 and the convergence of the CG solver is determined by reduction of the preconditioned residual norm by a factor \(10^{8}\). Finally, both systems are discretized by \(\text {BDM}_1\) elements.

Table 2 confirms robustness of the F(2, 2)-cycle for the displacement block of (4.12). In particular, the iterations can be seen to be bounded in mesh size and the Lamé parameter \(\lambda \).

Table 2 Number of preconditioned conjugate gradient iterations for approximating the displacement block \(\mathcal {B}_{\varvec{u}}\) of the Biot-Brinkman preconditioner

For the flux block \(\mathcal {B}_{\varvec{v}}\) we limit the investigations to the two-network case and set \(c_2=0\), \(\alpha _2=1\) as these parameter values yielded the stiffest problems (in terms of their condition numbers) in the robustness study of Sect. 5.2. Performance of the geometric multigrid preconditioner using a W(2, 2)-cycle with vertex-star smoother is then summarized in Fig. 11. We observe that the number of CG iterations is bounded in the mesh size and variations in \(K_2\), \(\nu _2\) and the exchange coefficient \(\beta \). We remark that for some parameter configurations the observed dependence of the iteration counts is not monotone in mesh size. In particular, the number of preconditioned CG iterations on a finer mesh can be smaller than on a coarse one. However, in these cases the difference is 1 or 2 iterations with the former being the typical value.

Fig. 11
figure 11

Number of preconditioned conjugate gradient iterations for approximating the flux block \(\mathcal {B}_{\varvec{v}}\) of the Biot-Brinkman preconditioner. The preconditioner uses W(2, 2)-cycle of geometric multigrid with vertex-star (damped Richardson) smoother and 3 grid levels. (Top) Transfer coefficient \(\beta =10^{6}\), (bottom) \(\beta =10^{-6}\). Values of \(K_2\), \(\nu _2\) (encoded by markers) and \(\lambda \) (encoded by line color) are varied. In both setups \(c_2=0\), \(\alpha _2=1\) and the remaining problem parameters are set to 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Q., Kraus, J., Kuchta, M. et al. Robust Approximation of Generalized Biot-Brinkman Problems. J Sci Comput 93, 77 (2022). https://doi.org/10.1007/s10915-022-02029-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-022-02029-w

Keywords

Navigation