Skip to main content
Log in

Assessment of cortical bone microdamage following insertion of microimplants using optical coherence tomography: a preliminary study

使用光学相干成像技术对皮质骨植入微种植体产生微创的评估

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objectives

The study was done to evaluate the efficacy of optical coherence tomography (OCT), to detect and analyze the microdamage occurring around the microimplant immediately following its placement, and to compare the findings with micro-computed tomography (μCT) images of the samples to validate the result of the present study.

Methods

Microimplants were inserted into bovine bone samples. Images of the samples were obtained using OCT and μCT. Visual comparisons of the images were made to evaluate whether anatomical details and microdamage induced by microimplant insertion were accurately revealed by OCT.

Results

The surface of the cortical bone with its anatomical variations is visualized on the OCT images. Microdamage occurring on the surface of the cortical bone around the microimplant can be appreciated in OCT images. The resulting OCT images were compared with the μCT images. A high correlation regarding the visualization of individual microcracks was observed. The depth penetration of OCT is limited when compared to μCT.

Conclusions

OCT in the present study was able to generate high-resolution images of the microdamage occurring around the microimplant. Image quality at the surface of the cortical bone is above par when compared with μCT imaging, because of the inherent high contrast and high-resolution quality of OCT systems. Improvements in the imaging depth and development of intraoral sensors are vital for developing a real-time imaging system and integrating the system into orthodontic practice.

中文概要

目的

评估光学相干成像技术(OCT)用于检测植入微种植体产生微创的效果, 并将其与显微计算机断层扫描技术(μCT)进行对比, 进一步验证OCT的检测效果。

创新点

采用两种成像技术进行比对, 共同验证OCT的准确性和可行性。

方法

将微种植体植入牛骨样品中, 使用OCT和μCT成像。通过对比两种技术的成像来分析解剖学细节和微创面, 从而判断OCT是否能够准确反映微种植体植入带来的微创。

结论

OCT能够生成高分辨率图片, 清晰地反映微种植体周围产生的微创裂纹。与μCT生成的图像相比, 由于OCT系统的高对比度和高分辨率, OCT所生产的皮质骨表面图像质量高于正常标准。提高成像深度和开发口腔内部传感器对于发展实时成像系统并将其用于畸齿校正具有重大意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakhsh TA, Sadr A, Shimada Y, et al., 2013. Concurrent evaluation of composite internal adaptation and bond strength in a class-I cavity. J Dent, 41(1):60–70. https://doi.org/10.1016/j.jdent.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  • Bredbenner TL, Haug RH, 2000. Substitutes for human cadaveric bone in maxillofacial rigid fixation research. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 90(5):574–580. https://doi.org/10.1067/moe.2000.111025

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Zevallos OM, Keller B, Viehland C, et al., 2016. Live volumetric (4D) visualization and guidance of in vivo human ophthalmic surgery with intraoperative optical coherence tomography. Sci Rep, 6:31689. https://doi.org/10.1038/srep31689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KS, Wijesinghe RE, Lee C, et al., 2017. In vivo observation of metamorphosis of Plodia interpunctella Hübner using three-dimensional optical coherence tomography. Entomol Res, 47(4):256–262. https://doi.org/10.1111/1748-5967.12220

    Article  Google Scholar 

  • Fercher AF, Mengedoht K, Werner W, 1988. Eye-length measurement by interferometry with partially coherent light. Opt Lett, 13(3):186–188. https://doi.org/10.1364/OL.13.000186

    Article  CAS  PubMed  Google Scholar 

  • Fernandes DJ, Elias CN, de Oliveira Ruellas AC, 2015. Influence of screw length and bone thickness on the stability of temporary implants. Materials, 8(9):6558–6569. https://doi.org/10.3390/ma8095322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu JT, Chen YJ, Ho JT, et al., 2014. A comparison of micro-CT and dental CT in assessing cortical bone morphology and trabecular bone microarchitecture. PLoS ONE, 9(9):e107545. https://doi.org/10.1371/journal.pone.0107545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Swanson EA, Lin CP, et al., 1991. Optical coherence tomography. Science, 254(5035):1178–1181. https://doi.org/10.1126/science.1957169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsumata A, Hirukawa A, Okumura S, et al., 2007. Effects of image artifacts on gray-value density in limited-volume cone-beam computerized tomography. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 104(6):829–836. https://doi.org/10.1016/j.tripleo.2006.12.005

    Article  PubMed  Google Scholar 

  • Koprowski R, Machoy M, Woźniak K, et al., 2014. Automatic method of analysis of OCT images in the assessment of the tooth enamel surface after orthodontic treatment with fixed braces. Biomed Eng Online, 13:48. https://doi.org/10.1186/1475-925X-13-48

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee NK, Baek SH, 2010. Effects of the diameter and shape of orthodontic mini-implants on microdamage to the cortical bone. Am J Orthod Dentofacial Orthop, 138(1):8.e1–8.e8. https://doi.org/10.1016/j.ajodo.2010.02.019

    Article  PubMed  Google Scholar 

  • Melsen B, Costa A, 2000. Immediate loading of implants used for orthodontic anchorage. Clin Orthod Res, 3(1):23–28. https://doi.org/10.1034/j.1600-0544.2000.030105.x

    Article  CAS  PubMed  Google Scholar 

  • Motoyoshi M, Inaba M, Ono A, et al., 2009. The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone. Int J Oral Maxillofac Surg, 38(1):13–18. https://doi.org/10.1016/j.ijom.2008.09.006

    Article  CAS  PubMed  Google Scholar 

  • Nackaerts O, Maes F, Yan H, et al., 2011. Analysis of intensity variability in multislice and cone beam computed tomography. Clin Oral Implants Res, 22(8):873–879. https://doi.org/10.1111/j.1600-0501.2010.02076.x

    Article  PubMed  Google Scholar 

  • Nguyen MV, Codrington J, Fletcher L, et al., 2017. Influence of cortical bone thickness on miniscrew microcrack formation. Am J Orthod Dentofacial Orthop, 152(3): 301–311. https://doi.org/10.1016/j.ajodo.2016.12.028

    Article  PubMed  Google Scholar 

  • Park HS, Jeong SH, Kwon OW, 2006. Factors affecting the clinical success of screw implants used as orthodontic anchorage. Am J Orthod Dentofacial Orthop, 130(1): 18–25. https://doi.org/10.1016/j.ajodo.2004.11.032

    Article  PubMed  Google Scholar 

  • Park JY, Chung JH, Lee JS, et al., 2017. Comparisons of the diagnostic accuracies of optical coherence tomography, micro-computed tomography, and histology in periodontal disease: an ex vivo study. J Periodontal Implant Sci, 47(1):30–40. https://doi.org/10.5051/jpis.2017.47.1.30

    Article  PubMed  PubMed Central  Google Scholar 

  • Pithon MM, de Jesus Santos M, de Souza CA, et al., 2015. Effectiveness of fluoride sealant in the prevention of carious lesions around orthodontic brackets: an OCT evaluation. Dental Press J Orthod, 20(6):37–42. https://doi.org/10.1590/2177-6709.20.6.037-042.oar

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravichandran NK, Wijesinghe RE, Shirazi MF, et al., 2016a. Depth enhancement in spectral domain optical coherence tomography using bidirectional imaging modality with a single spectrometer. J Biomed Opt, 21(7):076005. https://doi.org/10.1117/1.JBO.21.7.076005

    Article  Google Scholar 

  • Ravichandran NK, Wijesinghe RE, Shirazi MF, et al., 2016b. In vivo monitoring on growth and spread of gray leaf spot disease in capsicum annuum leaf using spectral domain optical coherence tomography. J Spectrosc, 2016:1093734. https://doi.org/10.1155/2016/1093734

    Article  Google Scholar 

  • Ravichandran NK, Wijesinghe RE, Lee SY, et al., 2017. Non-destructive analysis of the internal anatomical structures of mosquito specimens using optical coherence tomography. Sensors (Basel), 17(8):1897. https://doi.org/10.3390/s17081897

    Article  Google Scholar 

  • Seeliger J, Machoy M, Koprowski R, et al., 2017. Enamel thickness before and after orthodontic treatment analysed in optical coherence tomography. Biomed Res Int, 2017: 8390575. https://doi.org/10.1155/2017/8390575

    Article  PubMed  PubMed Central  Google Scholar 

  • Shank SB, Beck FM, D'Atri AM, et al., 2012. Bone damage associated with orthodontic placement of miniscrew implants in an animal model. Am J Orthod Dentofacial Orthop, 141(4):412–418. https://doi.org/10.1016/j.ajodo.2011.10.021

    Article  PubMed  Google Scholar 

  • Shirazi MF, Park K, Wijesinghe RE, et al., 2016. Fast industrial inspection of optical thin film using optical coherence tomography. Sensors (Basel), 16(10):1598. https://doi.org/10.3390/s16101598

    Article  CAS  Google Scholar 

  • Shirazi MF, Wijesinghe RE, Ravichandran NK, et al., 2017. Dual-path handheld system for cornea and retina imaging using optical coherence tomography. Opt Rev, 24(2): 219–225. https://doi.org/10.1007/s10043-016-0288-5

    Article  Google Scholar 

  • Wawrzinek C, Sommer T, Fischer-Brandies H, 2008. Microdamage in cortical bone due to the overtightening of orthodontic microscrews. J Orofac Orthop, 69(2):121–134. https://doi.org/10.1007/s00056-008-0742-5

    Article  PubMed  Google Scholar 

  • Wijesinghe RE, Cho NH, Park K, et al., 2016. Bio-photonic detection and quantitative evaluation method for the progression of dental caries using optical frequencydomain imaging method. Sensors (Basel), 16(12):2076. https://doi.org/10.3390/s16122076

    Article  Google Scholar 

  • Wijesinghe RE, Lee SY, Kim P, et al., 2017. Optical sensing method to analyze germination rate of Capsicum annum seeds treated with growth-promoting chemical compounds using optical coherence tomography. J Biomed Opt, 22(9): 091502. https://doi.org/10.1117/1.JBO.22.9.091502

    Article  Google Scholar 

  • Wilmes B, Rademacher C, Olthoff G, et al., 2006. Parameters affecting primary stability of orthodontic mini-implants. J Orofac Orthop, 67(3):162–174. https://doi.org/10.1007/s00056-006-0611-z

    Article  PubMed  Google Scholar 

  • Woodall N, Tadepalli SC, Qian F, et al., 2011. Effect of miniscrew angulation on anchorage resistance. Am J Orthod Dentofacial Orthop, 139(2):e147–e152. https://doi.org/10.1016/j.ajodo.2010.08.017

    Article  PubMed  Google Scholar 

  • Yadav S, Upadhyay M, Liu S, et al., 2012. Microdamage of the cortical bone during mini-implant insertion with selfdrilling and self-tapping techniques: a randomized controlled trial. Am J Orthod Dentofacial Orthop, 141(5):538–546. https://doi.org/10.1016/j.ajodo.2011.12.016

    Article  PubMed  Google Scholar 

  • Zhang Q, Lee CS, Chao J, et al., 2016. Wide-field optical coherence tomography based microangiography for retinal imaging. Sci Rep, 6:22017. https://doi.org/10.1038/srep22017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mansik Jeon or Hyo-sang Park.

Additional information

Project supported by the BK21 Plus Project Funded by the Ministry of Education, Korea (No. 21A20131600011) and the Industrial Infrastructure Program of Laser Industry Support Funded by the Ministry of Trade, Industry & Energy, Korea (No. N0000598)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lakshmikantha, H.T., Ravichandran, N.K., Jeon, M. et al. Assessment of cortical bone microdamage following insertion of microimplants using optical coherence tomography: a preliminary study. J. Zhejiang Univ. Sci. B 19, 818–828 (2018). https://doi.org/10.1631/jzus.B1700612

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700612

Key words

关键词

CLC number

Navigation