Skip to main content
Log in

Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts

葡萄糖和赤霉酸对芥蓝芽菜中芥子油苷含量及其抗氧化能力的影响

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Glucosinolates, anthocyanins, total phenols, and vitamin C, as well as antioxidant capacity, were investigated in Chinese kale sprouts treated with both glucose and gibberellic acid (GA3). The combination of 3% (0.03 g/ml) glucose and 5 μol/L GA3 treatment was effective in increasing glucosinolate content while glucose or GA3 treatment alone did not influence significantly almost all individual glucosinolates or total glucosinolates. The total phenolic content and antioxidant activity of Chinese kale sprouts were enhanced by combined treatment with glucose and GA3, which could be useful in improving the main health-promoting compounds and antioxidant activity in Chinese kale sprouts.

中文概要

目的

探究外源施加葡萄糖和赤霉酸对芥蓝芽菜中芥子油苷的积累,花青素、多酚和维生素C 等抗氧化物的含量,以及总抗氧化活性的影响。

创新点

首次发现葡萄糖和赤霉酸可以协同促进芥蓝芽菜中几乎所有种类芥子油苷以及总芥子油苷的积累,并且可以大幅度提升总多酚的含量以及抗氧化能力。

方法

以芥蓝芽菜为材料,使用3%(0.03 g/ml)葡萄糖和5 μmo/L 赤霉酸进行外源处理,以水处理作为对照组。用高效液相色谱法分析芥子油苷和维生素C的含量;采用分光光度法检测花青素的含量;用Folin-Ciocalteu 试剂法测定总多酚的含量;利用亚铁还原能力实验(FRAP)法进行总抗氧化能力的评估。

结论

葡萄糖和赤霉酸共同处理可以有效提升芥蓝芽菜中有益健康的植物化学物质含量以及抗氧化能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aarnink, A.J.A., Verstegen, M.W.A., 2007. Nutrition, key factor to reduce environmental load from pig production. Livest. Sci., 109(1-3):194–203. http://dx.doi.org/10.1016/j.livsci.2007.01.112

    Article  Google Scholar 

  • AOAC, 2006. Official Methods of Analysis, 18th Ed. Association of Official Analytical Chemists, Arlington, VA, USA.

    Google Scholar 

  • Banhazi, T.M., Seedorf, J., Rutley, D.L., et al., 2008. Identification of risk factors for sub-optimal housing conditions in Australian piggeries: Part 2. Airborne pollutants. J. Agric. Saf. Health, 14(1):21–39. http://dx.doi.org/10.13031/2013.24122

    Article  CAS  PubMed  Google Scholar 

  • Brown, J.A., Cline, T.R., 1974. Urea excretion in the pig: an indicator of protein quality and amino acid requirements. J. Nutr., 104(5):542–545.

    CAS  PubMed  Google Scholar 

  • Canh, T.T., Sutton, A.L., Aarnink, A.J., et al., 1998. Dietary carbohydrates alter the fecal composition and pH and the ammonia emission from slurry of growing pigs. J. Anim. Sci., 76(7):1887–1895. http://dx.doi.org/10.2527/1998.7671887x

    Article  CAS  PubMed  Google Scholar 

  • Canibe, N., Jensen, B.B., 2003. Fermented and nonfermented liquid feed to growing pigs: effect on aspects of gastrointestinal ecology and growth performance. J. Anim. Sci., 81(8):2019–2031. http://dx.doi.org/10.2527/2003.8182019x

    Article  CAS  PubMed  Google Scholar 

  • Chiavegato, M.B., Powers, W., Palumbo, N., 2015. Ammonia and greenhouse gas emissions from housed Holstein steers fed different levels of diet crude protein. J. Anim. Sci., 93(1):395–404. http://dx.doi.org/10.2527/jas.2014-8167

    Article  CAS  PubMed  Google Scholar 

  • Cho, J.H., Chen, Y.J., Min, B.J., et al., 2008. Effects of reducing dietary crude protein on growth performance, odor gas emission from manure and blood urea nitrogen and IGF-1 concentrations of serum in nursery pigs. Anim. Sci. J., 79(4):453–459. http://dx.doi.org/10.1111/j.1740-0929.2008.00549.x

    Article  CAS  Google Scholar 

  • Dumont, E., Hamon, L., Lagadec, S., et al., 2014. NH3 biofiltration of piggery air. J. Environ. Manage., 140:26–32. http://dx.doi.org/10.1016/j.jenvman.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  • Griess, P., 1879. Griess reagent: a solution of sulphanilic acid and α-naphthylamine in acetic acid which gives a pink colour on reaction with the solution obtained after decomposition of nitrosyl complexes. Chem. Ber., 12:427 (in German).

    Google Scholar 

  • Groenestein, C.M., Oosthoek, J., van Faassen, H.G., 1993. Microbial Processes in Deep-Litter Systems for Fattening Pigs and Emission of Ammonia, Nitrous Oxide and Nitric Oxide. EAAP Publication, the Netherlands.

    Google Scholar 

  • Hamscher, G., Pawelzick, H.T., Sczesny, S., et al., 2003. Antibiotics in dust originating from a pig-fattening farm: a new source of health hazard for farmers? Environ. Health Perspect., 111(13):1590–1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes, E.T., Leek, A.B.G., Curran, T.P., et al., 2004. The influence of diet crude protein level on odour and ammonia emissions from finishing pig houses. Bioresour. Technol., 91(3):309–315. http://dx.doi.org/10.1016/S0960-8524(03)00184-6

    Article  CAS  PubMed  Google Scholar 

  • Hobbs, P.J., Misselbrook, T.H., Pain, B.F., 1997. Characterisation of odorous compounds and emissions from slurries produced from weaner pigs fed dry feed and liquid diets. J. Sci. Food Agric., 73(4):437–445. http://dx.doi.org/10.1002/(SICI)1097-0010(199704)73:4<437::AID-JSFA748<3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Hoff, S.J., Bundy, D.S., Nelson, M.A., et al., 2006. Emissions of ammonia, hydrogen sulfide, and odor before, during, and after slurry removal from a deep-pit swine finisher. J. Air Waste Manag. Assoc., 56(5):581–590. http://dx.doi.org/10.1080/10473289.2006.10464472

    Article  CAS  PubMed  Google Scholar 

  • Ilea, R.C., 2009. Intensive livestock farming: global trends, increased environmental concerns, and ethical solutions. J. Agric. Environ. Ethics, 22(2):153–167. http://dx.doi.org/10.1007/s10806-008-9136-3

    Article  Google Scholar 

  • Jones, C.K., DeRouchey, J.M., Nelssen, J.L., et al., 2010. Effects of fermented soybean meal and specialty animal protein sources on nursery pig performance. J. Anim. Sci., 88(5):1725–1732. http://dx.doi.org/10.2527/jas.2009-2110

    Article  CAS  PubMed  Google Scholar 

  • Kohn, R.A., Dinneen, M.M., Russek-Cohen, E., 2005. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs and rats. J. Anim. Sci., 83(4):879–889. http://dx.doi.org/10.2527/2005.834879x

    Article  CAS  PubMed  Google Scholar 

  • Krupa, S.V., 2003. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review. Environ. Pollut., 124(2): 179–221. http://dx.doi.org/10.1016/S0269-7491(02)00434-7

    Article  CAS  PubMed  Google Scholar 

  • Le, P.D., Aarnink, A.J.A., Jongbloed, A.W., et al., 2008. Interactive effects of dietary crude protein and fermentable carbohydrate levels on odour from pig manure. Livest. Sci., 114(1):48–61. http://dx.doi.org/10.1016/j.livsci.2007.04.009

    Article  Google Scholar 

  • Leonard, R.H., 1963. Quantitative range of Nessler’s reaction with ammonia. Clin. Chem., 9(4):417–422.

    CAS  Google Scholar 

  • Loehr, R.C., Prakasam, T.B.S., Srinath, E.G., et al., 1973. Development and Demonstration of Nutrient Removal from Animal Wastes. Office of Research and Monitoring. Environmental Protection Agency. US Government Printing Office, Washington, DC.

    Google Scholar 

  • Lynch, M.B., O'Shea, C.J., Sweeney, T., et al., 2008. Effect of crude protein concentration and sugar-beet pulp on nutrient digestibility, nitrogen excretion, intestinal fermentation and manure ammonia and odour emissions from finisher pigs. Animal, 2(3):425–434. http://dx.doi.org/10.1017/S1751731107001267

    Article  CAS  PubMed  Google Scholar 

  • Min, X., Xiao, J., Kawasaki, K., et al., 2014. Transfer of blood urea nitrogen to cecal microbes and nitrogen retention in mature rabbits are increased by dietary fructooligosaccharides. Anim. Sci. J., 85(6):671–677. http://dx.doi.org/10.1111/asj.12205

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, R., Chakraborty, R., Dutta, A., 2016. Role of fermentation in improving nutritional quality of soybean meal—a review. Asian-Aust. J. Anim. Sci., 29(11):1523–1529. http://dx.doi.org/10.5713/ajas.15.0627

    Article  Google Scholar 

  • Murray, I., Parsons, J.W., Robinson, K., 1975. Interrelationships between nitrogen balance, pH and dissolved oxygen in an oxidation ditch treating farm animal waste. Water Res., 9(1):25–30. http://dx.doi.org/10.1016/0043-1354(75)90148-7

    Article  CAS  Google Scholar 

  • NRC (National Research Council), 2012. Nutrient Requirements of Swine, 11th Ed. Natl. Acad. Press, Washington, DC.

  • Patráš, P., Nitrayová, S., Brestenský, M., et al., 2012. Effect of dietary fiber and crude protein content in feed on nitrogen retention in pigs. J. Anim. Sci., 90(Suppl. 4):158–160. http://dx.doi.org/10.2527/jas.53837

    Article  PubMed  Google Scholar 

  • Pedersen, S., Nonnenmann, M., Rautiainen, R., et al., 2000. Dust in pig buildings. J. Agric. Saf. Health, 6(4):261–274. http://dx.doi.org/10.13031/2013.1909

    Article  CAS  PubMed  Google Scholar 

  • Portejoie, S., Martinez, J., Guiziou, F., et al., 2003. Effect of covering pig slurry stores on the ammonia emission processes. Bioresour. Technol., 87(3):199–207. http://dx.doi.org/10.1016/S0960-8524(02)00260-2

    Article  CAS  PubMed  Google Scholar 

  • Renard, J.J., Calidonna, S.E., Henley, M.V., 2004. Fate of ammonia in the atmosphere—a review for applicability to hazardous releases. J. Hazard. Mater., 108(1-2):29–60. http://dx.doi.org/10.1016/j.jhazmat.2004.01.015

    Article  CAS  PubMed  Google Scholar 

  • Rigolot, C., Espagnol, S., Robin, P., et al., 2010. Modelling of manure production by pigs and NH3, N2O and CH4 emissions. Part II: effect of animal housing, manure storage and treatment practices. Animal, 4(08):1413–1424. http://dx.doi.org/10.1017/S1751731110000509

    Article  CAS  PubMed  Google Scholar 

  • Shriver, J.A., Carter, S.D., Sutton, A.L., et al., 2003. Effects of adding fiber sources to reduced-crude protein, amino acid-supplemented diets on nitrogen excretion, growth performance, and carcass traits of finishing pigs. J. Anim. Sci., 81(2):492–502. http://dx.doi.org/10.2527/2003.812492x

    Article  CAS  PubMed  Google Scholar 

  • Suiryanrayna, M.V., Ramana, J.V., 2015. A review of the effects of dietary organic acids fed to swine. J. Anim. Sci. Biotechnol., 6(1):45. http://dx.doi.org/10.1186/s40104-015-0042-z

    Article  PubMed  PubMed Central  Google Scholar 

  • van Faassen, H.G., van Dijk, H., 1987. Manure as a source of nitrogen and phosphorus in soils. In: van der Meer, H.G., Unwin, R.J., van Dijk, T.A. (Eds.), Animal Manure on Grassland and Fodder Crops. Fertilizer or Waste? Springer Netherlands, p.27–45. http://dx.doi.org/10.1007/978-94-009-3659-1_3

    Chapter  Google Scholar 

  • Vogelzang, P.F., van der Gulden, J.W., Folgering, H., et al., 2000. Longitudinal changes in bronchial responsiveness associated with swine confinement dust exposure. Chest, 117(5):1488–1495. http://dx.doi.org/10.1378/chest.117.5.1488

    Article  CAS  PubMed  Google Scholar 

  • Webb, J., Thorman, R.E., Fernanda-Aller, M., et al., 2014. Emission factors for ammonia and nitrous oxide emissions following immediate manure incorporation on two contrasting soil types. Atmos. Environ., 82:280–287. http://dx.doi.org/10.1016/j.atmosenv.2013.10.043

    Article  CAS  Google Scholar 

  • Wu, L., He, L., Cui, Z., et al., 2015. Effects of reducing dietary protein on the expression of nutrition sensing genes (amino acid transporters) in weaned piglets. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(6):496–502. http://dx.doi.org/10.1631/jzus.B1400259

    Article  CAS  Google Scholar 

  • Ye, Z., Li, B., Cheng, B., et al., 2007. A concrete slatted floor system for separation of faeces and urine in pig houses. Biosyst. Eng., 98(2):206–214. http://dx.doi.org/10.1016/j.biosystemseng.2007.07.007

    Article  Google Scholar 

  • Zhou, C., Hu, J., Zhang, B., et al., 2015. Gaseous emissions, growth performance and pork quality of pigs housed in deep-litter system compared to concrete-floor system. Anim. Sci. J., 86(4):422–427. http://dx.doi.org/10.1111/asj.12311

    Article  CAS  PubMed  Google Scholar 

  • Abbasi, B.H., Stiles, A.R., Saxena, P.K., et al., 2012. Gibberellic acid increases secondary metabolite production in Echinacea purpurea hairy roots. Appl. Biochem. Biotechnol., 168(7):2057–2066. http://dx.doi.org/10.1007/s12010-012-9917-z

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth, E.A., Gillespie, K.M., 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc., 2(4): 875–877. http://dx.doi.org/10.1038/nprot.2007.102

    Article  CAS  PubMed  Google Scholar 

  • Benzie, I.F.F., Strain, J.J., 1996. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 239(1):70–76. http://dx.doi.org/10.1006/abio.1996.0292

    Article  CAS  PubMed  Google Scholar 

  • Cartea, M.E., Velasco, P., 2008. Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem. Rev., 7(2):213–229. http://dx.doi.org/10.1007/s11101-007-9072-2

    Article  CAS  Google Scholar 

  • Castañeda-Ovando, A., Pacheco-Hernández, M.D.L., Páez-Hernández, M.E., et al., 2009. Chemical studies of anthocyanins: a review. Food Chem., 113(4):859–871. http://dx.doi.org/10.1016/j.foodchem.2008.09.001

    Article  Google Scholar 

  • Dinkova-Kostova, A.T., Kostov, R.V., 2012. Glucosinolates and isothiocyanates in health and disease. Trends Mol. Med., 18(6):337–347. http://dx.doi.org/10.1016/j.molmed.2012.04.003

    Article  CAS  PubMed  Google Scholar 

  • Fahey, J.W., Zhang, Y.S., Talalay, P., 1997. Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc. Natl. Acad. Sci. USA, 94(19):10367–10372. http://dx.doi.org/10.1073/pnas.94.19.10367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frerigmann, H., Gigolashvili, T., 2014. MYB34, MYB51, and MYB122 distinctly regulate indolic glucosinolate biosynthesis in Arabidopsis thaliana. Mol. Plant, 7(5):814–828. http://dx.doi.org/10.1093/mp/ssu004

    Article  CAS  PubMed  Google Scholar 

  • Guo, R., Qian, H., Shen, W., et al., 2013a. BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis. J. Exp. Bot., 64(8):2401–2412. http://dx.doi.org/10.1093/jxb/ert094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, R., Yuan, G., Wang, Q., 2013b. Effect of NaCl treatments on glucosinolate metabolism in broccoli sprouts. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(2):124–131. http://dx.doi.org/10.1631/jzus.B1200096

    Article  CAS  Google Scholar 

  • Guo, R., Shen, W., Qian, H., et al., 2013c. Jasmonic acid and glucose synergistically modulate the accumulation of glucosinolates in Arabidopsis thaliana. J. Exp. Bot., 64(18):5707–5719. http://dx.doi.org/10.1093/jxb/ert348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., He, R., Liao, X., et al., 2014. Effect of exogenous gibberellin on reserve accumulation during the seed filling stage of oilseed rape. Genet. Mol. Res., 13(2):2827–2839. http://dx.doi.org/10.4238/2014.January.22.7

    Article  CAS  PubMed  Google Scholar 

  • Huseby, S., Koprivova, A., Lee, B.R., et al., 2013. Diurnal and light regulation of sulphur assimilation and glucosinolate biosynthesis in Arabidopsis. J. Exp. Bot., 64(4):1039–1048. http://dx.doi.org/10.1093/jxb/ers378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang, W., Sheng, Q., Jiang, Y., et al., 2004. Effects of 1-methylcyclopropene and gibberellic acid on ripening of Chinese jujube (Zizyphus jujuba M) in relation to quality. J. Sci. Food Agric., 84(1):31–35. http://dx.doi.org/10.1002/jsfa.1594

    Article  CAS  Google Scholar 

  • Kim, H.H., Kwon, D.Y., Uddin, M.R., et al., 2013. Influence of auxins on glucosinolate biosynthesis in hairy root cultures of Broccoli (Brassica oleracea var. italica). Asian J. Chem., 25(11):6099–6101.

    CAS  Google Scholar 

  • Kim, H.J., Chen, F., Wang, X., et al., 2006. Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). J. Agric. Food Chem., 54(19):7263–7269. http://dx.doi.org/10.1021/jf060568c

    Article  CAS  PubMed  Google Scholar 

  • Kumar, G., Tuli, H.S., Mittal, S., et al., 2015. Isothiocyanates: a class of bioactive metabolites with chemopreventive potential. Tumor Biol., 36(6):4005–4016. http://dx.doi.org/10.1007/s13277-015-3391-5

    Article  CAS  Google Scholar 

  • Liang, Z., Ma, Y., Xu, T., et al., 2013. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in Salvia miltiorrhiza Bunge hairy roots. PLoS ONE, 8(9):e72806. http://dx.doi.org/10.1371/journal.pone.0072806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loreti, E., Povero, G., Novi, G., et al., 2008. Gibberellins, jasmonate and abscisic acid modulate the sucroseinduced expression of anthocyanin biosynthetic genes in Arabidopsis. New Phytol., 179(4):1004–1016. http://dx.doi.org/10.1111/j.1469-8137.2008.02511.x

    Article  CAS  PubMed  Google Scholar 

  • Mazumder, A., Dwivedi, A., du Plessis, J., 2016. Sinigrin and its therapeutic benefits. Molecules, 21(4):416. http://dx.doi.org/10.3390/molecules21040416

    Article  PubMed  Google Scholar 

  • Miao, H., Wei, J., Zhao, Y., et al., 2013. Glucose signalling positively regulates aliphatic glucosinolate biosynthesis. J. Exp. Bot., 64(4):1097–1109. http://dx.doi.org/10.1093/jxb/ers399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naeem, N., Ishtiaq, M., Khan, P., et al., 2001. Effect of gibberellic acid on growth and yield of tomato cv. Roma. J. Biol. Sci., 1(6):448–450. http://dx.doi.org/10.3923/jbs.2001.448.450

    Article  Google Scholar 

  • Park, C.H., Yeo, H.J., Park, Y.J., et al., 2017. Influence of indole-3-acetic acid and gibberellic acid on phenylpropanoid accumulation in common buckwheat (Fagopyrum esculentum Moench) sprouts. Molecules, 22(3):374. http://dx.doi.org/10.3390/molecules22030374

    Article  Google Scholar 

  • Podsędek, A., 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: a review. LWT-Food Sci. Technol., 40(1):1–11. http://dx.doi.org/10.1016/j.lwt.2005.07.023

    Article  Google Scholar 

  • Schweizer, F., Fernándezcalvo, P., Zander, M., et al., 2013. Arabidopsis basic helix-loop-helix transcription factors MYC2, MYC3, and MYC4 regulate glucosinolate biosynthesis, insect performance, and feeding behavior. Plant Cell, 25(8):3117–3132. http://dx.doi.org/10.1105/tpc.113.115139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheen, J., 2014. Master regulators in plant glucose signaling networks. J. Plant Biol., 57(2):67–79. http://dx.doi.org/10.1007/s12374-014-0902-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, B., Liu, N., Zhao, Y., et al., 2011. Variation of glucosinolates in three edible parts of Chinese kale (Brassica alboglabra Bailey) varieties. Food Chem., 124(3):941–947. http://dx.doi.org/10.1016/j.foodchem.2010.07.031

    Article  CAS  Google Scholar 

  • Sun, B., Yan, H., Zhang, F., et al., 2012. Effects of plant hormones on main health-promoting compounds and antioxidant capacity of Chinese kale. Food Res. Int., 48(2):359–366. http://dx.doi.org/10.1016/j.foodres.2012.04.021

    Article  CAS  Google Scholar 

  • Teng, S., Keurentjes, J., Bentsink, L., et al., 2005. Sucrosespecific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiol., 139(4):1840–1852. http://dx.doi.org/10.1104/pp.105.066688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Gu, H., Yu, H., et al., 2012. Genotypic variation of glucosinolates in broccoli (Brassica oleracea var. italica) florets from China. Food Chem., 133(3):735–741. http://dx.doi.org/10.1016/j.foodchem.2012.01.085

    CAS  Google Scholar 

  • Wei, J., Miao, H., Wang, Q., 2011. Effect of glucose on glucosinolates, antioxidants and metabolic enzymes in Brassica sprouts. Sci. Hort., 129(4):535–540. http://dx.doi.org/10.1016/j.scienta.2011.04.026

    Article  CAS  Google Scholar 

  • Yuan, G., Sun, B., Yuan, J., et al., 2009. Effects of different cooking methods on health-promoting compounds of broccoli. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 10(8):580–588. http://dx.doi.org/10.1631/jzus.B0920051

    Article  Google Scholar 

  • Yuan, G., Bo, S., Jing, Y., et al., 2010a. Effect of 1-methylcyclopropene on shelf life, visual quality, antioxidant enzymes and health-promoting compounds in broccoli florets. Food Chem., 118(3):774–781. http://dx.doi.org/10.1016/j.foodchem.2009.05.062

    Article  CAS  Google Scholar 

  • Yuan, G., Wang, X., Guo, R., et al., 2010b. Effect of salt stress on phenolic compounds, glucosinolates, myrosinase and antioxidant activity in radish sprouts. Food Chem., 121(4):1014–1019. http://dx.doi.org/10.1016/j.foodchem.2010.01.040

    Article  CAS  Google Scholar 

  • Zang, Y., Ge, J., Huang, L., et al., 2015. Leaf and root glucosinolate profiles of Chinese cabbage (Brassica rapa ssp.pekinensis) as a systemic response to methyl jasmonate and salicylic acid elicitation. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(8):696–708. http://dx.doi.org/10.1631/jzus.B1400370

    Article  CAS  Google Scholar 

  • Zhang, Y., Zhen, L., Tan, X., et al., 2014. The involvement of hexokinase in the coordinated regulation of glucose and gibberellin on cell wall invertase and sucrose synthesis in grape berry. Mol. Biol. Rep., 41(12):7899–7910. http://dx.doi.org/10.1007/s11033-014-3683-7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Sun or Qiao-mei Wang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 31270343 and 31500247) and the China Postdoctoral Science Foundation (No. 2015M581922)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, Hy., Wang, My., Chang, Jq. et al. Effects of glucose and gibberellic acid on glucosinolate content and antioxidant properties of Chinese kale sprouts. J. Zhejiang Univ. Sci. B 18, 1093–1100 (2017). https://doi.org/10.1631/jzus.B1700308

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1700308

Keywords

CLC number

关键词

Navigation