Skip to main content
Log in

Development and current clinical application of ventricular assist devices in China

心室辅助装置在中国的发展和临床应用现状

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Heart failure has become one of the biggest threats to human health. Transplantation remains the most effective therapy for heart failure, but because of the shortage of donors, it cannot meet the demand. Ventricular assist devices (VADs) were developed to treat heart failure, and have now been clinically applied worldwide. As the country with the largest population, China is also facing the threat of heart failure. However, the development of VADs in China is very slow and is seldom discussed. This paper first talks about the background for VAD development in China. Then several home-developed VADs in China are introduced. The current clinical application status of VADs in China is also presented. Finally the challenge and opportunity for VAD development in China are discussed.

概 要

由于人口基数巨大, 我国存在大量心力衰竭病人急需治疗, 但心脏供体的数量远远无法满足要求。 因此, 心室辅助装置在我国有广阔的市场需求和应用前景。 目前我国心室辅助装置的发展相比发达国家较为滞后, 临床应用也数量很少, 其高昂的价格是重要制约因素, 我国医疗资源的不 平衡也是影响因素。 我国现已制定各种政策和法规鼓励国产心室辅助装置的发展, 也有科研经费和地方财政进行支持。 国产心室辅助装置的价格预计会大大低于进口心室辅助装置, 一旦投入临床应用, 可以使更多的心力衰竭病人受益。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bui, A.L., Horwich, T.B., Fonarow, G.C., 2011. Epidemiology and risk profile of heart failure. Nat. Rev. Cardiol., 8(1): 30–41. http://dx.doi.org/10.1038/nrcardio.2010.165

    Article  PubMed  Google Scholar 

  • Chang, Y., Gao, B., 2010. Modeling and identification of an intra-aorta pump. ASAIO J., 56(6):504–509. http://dx.doi.org/10.1097/MAT.0b013e3181efff2d

    Article  PubMed  Google Scholar 

  • Chang, Y., Gu, K., Gao, B., et al., 2013. Hemodynamic influence of cardiovascular system in intra-aorta pump. J. Beijing Univ. Technol., 39(4):629–633 (in Chinese).

    Google Scholar 

  • Chen, C., 2016. Could suspended artificial hearts replace heart transplantation? Report on the Legend Star MED-TED Conference, Beijing, China (in Chinese).

    Google Scholar 

  • Chen, H.B., 2011. Biofunction Study of FW-II Axial Blood Pump for Short-Term Assistance. MD Thesis, Peking Union Medical College, Beijing, China (in Chinese).

    Google Scholar 

  • Chen, W., Gao, R., Liu, L., et al., 2015. Report on cardiovascular disease in China, 2014. Chin. Circul. J., 30(7): 617–622 (in Chinese). http://dx.doi.org/10.3969/j.issn.1000-3614.2015.07.001

    Google Scholar 

  • de By, T.M.M.H., Mohacsi, P., Gummert, J., et al., 2015. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): first annual report. Eur. J. Cardiothorac. Surg., 47(5):770–777. http://dx.doi.org/10.1093/ejcts/ezv096

    Article  PubMed  Google Scholar 

  • Fan, H., Lu, R., Li, J., et al., 2008. Clinical application of mechanical circulatory support in the treatment of heart failure. Chin. J. Emerg. Med., 16(3):302–305 (in Chinese). http://dx.doi.org/10.3760/j.issn:1671-0282.2007.03.021

    Google Scholar 

  • Fu, Y., Hu, L., Ruan, X., et al., 2015. A transcutaneous energy transmission system for artificial heart adapting to changing impedance. Artif. Organs, 39(4):378–387. http://dx.doi.org/10.1111/aor.12384

    Article  PubMed  Google Scholar 

  • Gu, K., Chang, Y., Gao, B., et al., 2014a. Development of ventricular assist devices in China: present status, opportunities and challenges. Eur. J. Cardiothorac. Surg., 46(2):179–185. http://dx.doi.org/10.1093/ejcts/ezu020

    Article  PubMed  Google Scholar 

  • Gu, K., Gao, B., Chang, Y., et al., 2014b. The hemodynamic effect of phase differences between the BJUT-II ventricular assist device and native heart on the cardiovascular system. Artif. Organs, 38(11):914–923. http://dx.doi.org/10.1111/aor.12298

    Article  PubMed  Google Scholar 

  • Han, Q., Zou, J., Ruan, X., et al., 2012. A novel design of spiral groove bearing in a hydrodynamically levitated centrifugal rotary blood pump. Artif. Organs, 36(8):739–746. http://dx.doi.org/10.1111/j.1525-1594.2012.01467.x

    Article  PubMed  Google Scholar 

  • Hu, S., Sun, H., Luo, X., et al., 2008. Clinical experience of BVS5000 left ventricular assist devices in heart failure patients. Chin. J. Surg., 46(7):531–533 (in Chinese). http://dx.doi.org/10.3321/j.issn:0529-5815.2008.07.014

    PubMed  Google Scholar 

  • Hu, S., Sun, H., Li, L., et al., 2014a. Preliminary clinical evaluation of FW-II axial pump on short-term adjuvant therapy for acute left heart failure. Chin. Circul. J., 30(10): 63 (in Chinese).

    Google Scholar 

  • Hu, S., Dong, N., Wei, X., et al., 2014b. Report on heart transplantation in China, 2013. Chin. Circul. J., 29(z1): 97 (in Chinese).

    Google Scholar 

  • Huang, H., Xiao, X., Lu, C., et al., 2013. Development and application of pediatric and adult Luo-Ye ventricular assist devices. Chin. Circul. J., 28(z1):186 (in Chinese).

    Google Scholar 

  • Hunt, S.A., Frazier, O.H., 1998. Mechanical circulatory support and cardiac transplantation. Circulation, 97(20): 2079–2090. http://dx.doi.org/10.1161/01.CIR.97.20.2079

    Article  CAS  PubMed  Google Scholar 

  • Kirklin, J.K., Naftel, D.C., Pagani, F.D., et al., 2015. Seventh INTERMACS annual report: 15,000 patients and counting. J. Heart Lung Transpl., 34(12):1495–1504. http://dx.doi.org/10.1016/j.healun.2015.10.003

    Article  Google Scholar 

  • Kumar, A., Phanwilkar, P.S., 2011. Long-term implantable ventricular assist devices (VADs) and total artificial hearts (TAHs). In: Ducheyne, P. (Ed.), Comprehensive Biomaterials. Elsevier, Amsterdam, p.389–402. http://dx.doi.org/10.1016/B978-0-08-055294-1.00226-9

    Chapter  Google Scholar 

  • Li, G., Zhu, X., Hao, Z., 2010. Study of anatomic fit of micro apex pump and surgical injure in animal implantation experiments. Chin. Med. Eq. J., 31(3):20–22 (in Chinese). http://dx.doi.org/10.3969/j.issn.1003-8868.2010.03.008

    CAS  Google Scholar 

  • Li, G., Zhu, X., Chen, H., et al., 2015. Comparative study of miniature apex axial flow blood pumps with different structures. Chin. Med. Eq. J., 36(7):4–8 (in Chinese). http://dx.doi.org/10.7687/j.issn1003-8868.2015.07.004

    Article  CAS  Google Scholar 

  • Li, H., Wu, G., Lin, C., et al., 2013. Partial support of the ovine heart with left ventricular assist devices: implication of hemodynamics. Chin. J. Extracorp. Circul., 11(2):103–106, 128 (in Chinese). http://dx.doi.org/10.3969/j.issn.1672-1403.2013.02.012

    Google Scholar 

  • Lin, C., Wu, G., Liu, X., et al., 2013. In vivo survival evaluation of the ChinaHeart ventricular assist device. Beijing Biomed. Eng., 32(5):472–478 (in Chinese). http://dx.doi.org/10.3969/j.issn.1002-3208.2013.05.06

    Google Scholar 

  • Liu, T., Zhang, J., Liu, Z., et al., 2015. Experimental research on magnetic and hydrodynamic suspension-centrifugal ventricular auxiliary device. Chin. J. Biomed. Eng., 21(3): 242–246. http://dx.doi.org/10.3760/cma.j.issn.1674-1927.2015.03.010

    Google Scholar 

  • Liu, X., Wu, G., Xu, C., et al., 2012. In vivo survival evaluation of the ChinaHeart left ventricular assist device. Chin. J. Biomed. Eng., 31(5):736–741. http://dx.doi.org/10.3969/j.issn.0258-8021.2012.05.013

    Google Scholar 

  • Lobanoff, V.S., Ross, R.R., 2013. Centrifugal Pumps: Design and Application, 2nd Ed. Elsevier, Amsterdam, p.239–247.

    Google Scholar 

  • Lu, R., Fan, H., Li, J., et al., 2007. Clinical application of mechanical circulatory support in the treatment of end-ofstage heart failure. J. Clin. Cardiol., 23(8):633–634. http://dx.doi.org/10.3969/j.issn.1001-1439.2007.08.028

    Google Scholar 

  • Luo, X., Hu, S., Sun, H., et al., 2008a. Mechanical circulation support as emergency bridging for heart transplantation. Chin. Med. Surg., 46(14):1073–1075 (in Chinese). http://dx.doi.org/10.3321/j.issn:0529-5815.2008.14.010

    Google Scholar 

  • Luo, X., Hu, S., Sun, H., et al., 2008b. Clinical application of BVS5000 left ventricular assist device in HF patients in China. Chin. Med. Surg., 121(10):877–880 (in Chinese).

    Google Scholar 

  • Moreno, S.G., Novielli, N., Cooper, N.J., 2012. Costeffectiveness of the implantable Heart Mate II left ventricular assist device for patients awaiting heart transplantation. J. Heart Lung Transpl., 31(5):450–458. http://dx.doi.org/10.1016/j.healun.2011.10.017

    Article  Google Scholar 

  • National Bureau of Statistics of China, 2016. Statistical Communique of the People’s Republic of China on the 2015 National Economic and Social Development (in Chinese). http://www.stats.gov.cn/tjsj/zxfb/201602/t20160229_1323991

    Google Scholar 

  • Nishimura, T., 2014. Current status of extracorporeal ventricular assist devices in Japan. J. Artif. Organs, 17(3):211–219. http://dx.doi.org/10.1007/s10047-014-0779-8

    Article  PubMed  Google Scholar 

  • Qian, K., 2009. Artificial heart non-pulsatile ventricular assist device with straight impeller vanes. J. Clin. Rehabilit. Tissue Eng. Res., 13(26):5122–5124 (in Chinese). http://dx.doi.org/10.3969/j.issn.1673-8225.2009.26.027

    Google Scholar 

  • Qian, K., Xu, Z., Wang, H., 2010. Investigation on applying passive magnetic bearings to impeller left ventricular assist devices (LVAD). 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE. http://dx.doi.org/10.1109/bmei.2010.5639413

    Google Scholar 

  • Rong, X., Qin, B., Zhang, J., 2013. Clinical application of ventricular assist devices in refractory heart arrest patient. China Pract. J. Med., 40(21):126–126 (in Chinese). http://dx.doi.org/10.3760/cma.j.issn.1674-4756.2013.21.066

    Google Scholar 

  • Rose, E.A., Gelijns, A.C., Moskowitz, A.J., et al., 2001. Longterm mechanical left ventricular assistance for end-stage heart failure. N. Engl. J. Med., 345(20):1435–1443. http://dx.doi.org/10.1056/NEJMoa012175

    Article  CAS  PubMed  Google Scholar 

  • Sawa, Y., 2014. Current status of third-generation implantable left ventricular assist devices in Japan, Duraheart and HeartWare. Surg. Today, 45(6):672–681. http://dx.doi.org/10.1007/s00595-014-0957-6

    Article  PubMed  Google Scholar 

  • State Council of China, 2014. Regulations for Supervision and Management of Medical Devices (in Chinese). http://www. sda.gov.cn/WS01/CL0784/97814

    Google Scholar 

  • Wang, F., Wu, Q., Jing, T., et al., 2010. Flow patterns and shear stress investigation and in vitro studies of blood pump. 2010 3rd International Conference on Biomedical Engineering and Informatics, IEEE. http://dx.doi.org/10.1109/bmei.2010.5639474

    Google Scholar 

  • Wu, Q., Zhang, Y., Guo, S., et al., 2004. tiA case using left ventricular mechanical assist devices for bridge-totransplant treatment for 2 years. Chin. J. Surg., 42(24): 1533–1534 (in Chinese). http://dx.doi.org/10.3760/j:issn:0529-5815.2004.24

    Google Scholar 

  • Wu, Y., Zhu, L., Luo, Y., 2017. Design and hemocompatibility analysis of a double-suction injection suspension blood pump using computational fluid dynamics methods. Artif. Organs, in press. http://dx.doi.org/10.1111/aor.12888

    Google Scholar 

  • Xiao, X., Fan, R., Chen, A., et al., 2002. The clinical trial of pneumatic pump (Luo-Ye pump) as left ventricular assist device. South China J. Cardiovasc. Dis., 8(1):43–45 (in Chinese). http://dx.doi.org/10.3969/j.issn.1007-9688.2002.01.015

    Google Scholar 

  • Xiao, X.J., Luo, Z.X., Ye, C.X., et al., 2009. The short-term pulsatile ventricular assist device for postcardiotomy cardiogenic shock: a clinical trial in China. Artif. Organs, 33(4):373–377. http://dx.doi.org/10.1111/j.1525-1594.2009.00729.x

    Article  PubMed  Google Scholar 

  • Xie, C., Liu, Q., Wu, Y., 2015. The application of the left ventricular support device impella 2.5-assist device and nursing. Chin. J. Nurs., 50(10):1276–1278 (in Chinese). http://dx.doi.org/10.3761/j.issn.0254-1769.2015.10.026

    Google Scholar 

  • Xu, C., Lin, C., Wu, G., et al., 2012. Study of hemolysis performance for China heart ventricular assist device. China Med. Dev., 27(11):46–49 (in Chinese). http://dx.doi.org/10.3969/j.issn.1674-1633.2012.11.009

    Google Scholar 

  • Xuan, Y., Chang, Y., Gu, K., et al., 2012. Hemodynamic simulation study of a novel intra-aorta left ventricular assist device. ASAIO J., 58(5):462–469. http://dx.doi.org/10.1097/MAT.0b013e318268eaf7

    Article  PubMed  Google Scholar 

  • Yan, C., Liang, J., 2015. Perioperative nursing care for highrisk coronary artery interventional therapy with ventricular assist devices support. Chin. Circul. J., 30(z1):163–164 (in Chinese). http://dx.doi.org/10.3969/j.issn.1000-3614.2015.z1.441

    Google Scholar 

  • Zhang, Q., Gao, B., Gu, K., et al., 2014. The study on hemodynamic effect of varied support models of BJUT-II VAD on coronary artery. ASAIO J., 60(6):643–651. http://dx.doi.org/10.1097/MAT.0000000000000137

    Article  PubMed  Google Scholar 

  • Zhang, W., Zhang, J., Liu, T., et al., 2014. In vitro hemolysis test and durability test of magnetic and hydrodynamic levitation blood pump. J. Biomed. Eng. Res., 33(1):15–18.

    Google Scholar 

  • Zhao, J., Hei, F., 2016. Report on cardiac surgery and extracorporeal circulation in China, 2014. Chin. J. Extracorp. Circul., 14(3):130–132 (in Chinese). http://dx.doi.org/10.13498/j.cnki.chin.j.ecc.2016.03.02

    Google Scholar 

  • Zhou, C., Xiao, X., Zhuang, J., et al., 2011. Animal experiment of pediatric Luo-Ye pneumonic ventricular assist device. Chin. J. Exp. Surg., 28(3):439–441 (in Chinese). http://dx.doi.org/10.3760/cma.j.issn.1001-9030.2011.03.040

    CAS  Google Scholar 

  • Zhu, D., Long, C., Hei, F., et al., 2015. Report on cardiac surgery and extracorporeal circulation in China, 2014. Chin. J. Extracorp. Circul., 13(3):129–131 (in Chinese). http://dx.doi.org/10.13498/j.cnki.chin.j.ecc.2015.03.01

    Google Scholar 

  • Zhu, L., Wu, Y., Luo, Y., 2016. Experiment evaluation of a novel injection suspended impeller for implantable centrifugal blood pump. Int. J. Appl. Electrom., 52(1–2):525–530. http://dx.doi.org/10.13498/10.3233/JAE-162159

    Google Scholar 

  • Zhuang, B., Luo, X., Zhang, Y., et al., 2010. Design optimization for a shaft-less double suction mini turbo pump. IOP Conference Series: Earth and Environmental Science, Volume 12, 012049. http://dx.doi.org/10.1088/1755-1315/12/1/012049

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Luo.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50821003) and the Shanghai Committee of Science and Technology (No. 15441905200), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Zhu, Lf. & Luo, Y. Development and current clinical application of ventricular assist devices in China. J. Zhejiang Univ. Sci. B 18, 934–945 (2017). https://doi.org/10.1631/jzus.B1600405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600405

Key words

CLC number

关键词

Navigation