Skip to main content

Therapy Management of VADs

  • Chapter
  • First Online:
Artificial Hearts
  • 348 Accesses

Abstract

Cardiovascular disease is the leading cause of global morbidity. Chronic ischemic heart disease, acute heart failure, and myocardial infarction are among the primary causes of mortality in Europe (45% of all deaths), the United States of America (34.3%), and worldwide (45% of noncommunicable diseases). Different strategies can be planned for the treatment of heart disease according to the severity, cause, and course of heart failure. It includes adjusting patients’ lifestyle, medication, and surgical treatment. But for patients with end-stage heart failure waiting for heart transplantation, the number of donated hearts is usually insufficient. Therefore, the auxiliary equipment of ventricular implantation becomes very important. Because it can provide different treatment options for patients with heart failure from excessive to recovery, decision, transplantation, or ultimate treatment. According to the seventh INTERMACS data showed that more than 13,000 patients received left ventricular support from the United States in 2014, of which 955 received pulsatile flow LVADs and 12,030 continuous flow LVADs. This chapter provides an overview of the current implantable rotating left ventricular assist device (LVAD), patient selection, surgical overview, and postoperative management strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125:e2–e220.

    PubMed  Google Scholar 

  2. Roger VL, Weston SA, Redfield MM, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344–50.

    CAS  PubMed  Google Scholar 

  3. Costanzo MR, Mills RM, Wynne J. Characteristics of “Stage D” heart failure: Insights from the Acute Decompensated Heart Failure National Registry Longitudinal Module (ADHERE LM). Am Heart J. 2008;155:339–47.

    PubMed  Google Scholar 

  4. Taylor DO, Stehlik J, Edwards LB, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-sixth of official adult heart transplant report-2009. J Heart Lung Transplant. 2009;28:1007–22.

    PubMed  Google Scholar 

  5. Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34:1495–504.

    PubMed  Google Scholar 

  6. Kirklin JK, Cantor RS, Myers SL, et al. Intermacs interagency registry for mechanically assisted circulatory support: quarterly statistical report 2016 Q3: implant and event dates: June 23, 2006 to September 30, 2016. Birmingham, AL: Data Collection and Analysis Center, University of Alabama. Available at: www.uab.edu/medicine/intermacs/images/Federal_Quarterly_Report/Federal_Partners_ Report_2016_Q3.pdf. Accessed March 20, 2017.

  7. Feldman D, Pamboukian SV, Teuteberg JJ, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.

    PubMed  Google Scholar 

  8. Gordon RJ, Weinberg AD, Pagani FD, et al. Prospective, multicenter study of ventricular assist device infections. Circulation. 2013;127:691–702.

    PubMed  PubMed Central  Google Scholar 

  9. Shah P, Mehta VM, Cowger JA, Aaronson KD, Pagani FD. Diagnosis of hemolysis and device thrombosis with lactate dehydrogenase during left ventricular assist device support. J Heart Lung Transplant. 2014;33:102–4.

    PubMed  Google Scholar 

  10. Uriel N, Morrison KA, Garan AR, et al. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous-flow left ventricular assist devices: the Columbia ramp study. J Am Coll Cardiol. 2012;60:1764–75.

    PubMed  PubMed Central  Google Scholar 

  11. Stainback RF, Estep JD, Agler DA, et al. Echo-cardiography in the management of patients with left ventricular assist devices: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2015;28:853–909.

    PubMed  Google Scholar 

  12. Vivo RP, Kassi M, Estep JD, et al. MDCT assessment of mechanical circulatory support device complications. J Am Coll Cardiol Img. 2015;8:100–2.

    Google Scholar 

  13. Fukuhara S, Ikegami H, Polanco AR, et al. Concomitant repair for mild aortic insufficiency and continuous-flow left ventricular assist devices. Eur J Cardiothorac Surg. 2017;52:1062–8.

    PubMed  Google Scholar 

  14. Krishan K, Nair A, Pinney S, et al. Liberal use of tricuspid-valve annuloplasty during left ventricular assist device implantation. Eur J Cardiothorac Surg. 2012;41:213–7.

    PubMed  Google Scholar 

  15. Stulak JM, Deo S, Shirger J, et al. Preoperative atrial fibrillation increases risk of thromboembolic events after left ventricular assist device implantation. Ann Thorac Surg. 2013;96:2161–7.

    PubMed  Google Scholar 

  16. Goldstein DJ, Oz MC, Rose EA. Implantable left ventricular assist devices. N Engl J Med. 1998;339:1522–33.

    CAS  PubMed  Google Scholar 

  17. Aria H, Swartz MT, Pennington DG, et al. Importance of ventricular arrhythmias in bridge patients with ventricular assist devices. ASAIO Trans. 1991;37:M427–8.

    Google Scholar 

  18. Oz MC, Rose EA, Slater JP, Kuiper JJ, Catanese KA, Levin HR. Malignant ventricular arrhythmias are well tolerated in patients receiving long-term left ventricular assist devices. J Am Coll Cardiol. 1994;24:1688–91.

    CAS  PubMed  Google Scholar 

  19. Ambrosino N, Opasich C, Crotti P, Cobelli F, Tavazzi L, Rampulla C. Breathing pattern, ventilatory drive and respiratory muscle strength in patients with chronic heart failure. Eur Respir J. 1994;7:17–22.

    CAS  PubMed  Google Scholar 

  20. Dusman RE, Stanton MS, Miles WM, et al. Clinical features of amiodarone-induced pulmonary toxicity. Circulation. 1990;82:51–9.

    CAS  PubMed  Google Scholar 

  21. Chau EM, Bailey KR, Mahoney DW, et al. Predictors of reversibility of pulmonary hypertension in cardiac transplant recipients in the first postoperative year. Circulation. 1996;94(Suppl II):II-267–72.

    CAS  Google Scholar 

  22. Foray A, Williams D, Reemtsma K, Oz MC, Mancini D. Assessment of submaximal exercise capacity in patients with left ventricular assist devices. Circulation. 1996;94(Suppl II):II-222–6.

    CAS  Google Scholar 

  23. Nishimura S, Radovancevic B, Odegaard P, Myers T, Springer W, Frazier OH. Exercise capacity recovers slowly but fully in patients with a left ventricular assist device. ASAIO J. 1996;42:M568–70.

    CAS  PubMed  Google Scholar 

  24. Nakatani S, McCarthy PM, Kottke-Marchant K, et al. Left ventricular echocardiographic and histologic changes: impact of chronic unloading by an implantable ventricular assist device. J Am Coll Cardiol. 1996;27:894–901.

    CAS  PubMed  Google Scholar 

  25. Scheinin SA, Capek P, Radovencevic B, Duncan JM, McAllister HA, Frazier OH. The effect of prolonged left ventricular support on myocardial histopathology in patients with end-stage cardiomyopathy. ASAIO J. 1992;38:M271–4.

    CAS  PubMed  Google Scholar 

  26. Jacquet L, Zerbe T, Stein KL, Kormos RL, Griffith BP. Evolution of human cardiac myocyte dimension during prolonged mechanical support. J Thorac Cardiovasc Surg. 1991;101:256–9.

    CAS  PubMed  Google Scholar 

  27. McCarthy PM, Nakatani S, Vargo R, et al. Structural and left ventricular histologic changes after implantable LVAD insertion. Ann Thorac Surg. 1995;59:609–13.

    CAS  PubMed  Google Scholar 

  28. Lee SH, Osbakken M, Doliba N, Oz M, Mancini D. LVAD therapy improves myocardial mitochondrial metabolism in patients with heart failure. Circulation. 1996;94(Suppl I):I-294. abstract.

    Google Scholar 

  29. Estrada-Quintero T, Uretsky BF, Murali S, et al. Amelioration of the heart failure state with left ventricular assist system support. J Am Coll Cardiol. 1992;19(Suppl A):254A. abstract.

    Google Scholar 

  30. James KB, McCarthy PM, Thomas JD, et al. Effect of the implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation. 1995;92(Suppl II):II-191–5.

    CAS  Google Scholar 

  31. Levin HR, Oz MC, Chen JM, Packer M, Rose EA, Burkhoff D. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading. Circulation. 1995;91:2717–20.

    CAS  PubMed  Google Scholar 

  32. Muller J, Wallukat G, Weng Y-G, et al. Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation. 1997;96:542–9.

    CAS  PubMed  Google Scholar 

  33. Rose EA, Levin HR, Oz MC, et al. Artificial circulatory support with textured interior surfaces: a counterintuitive approach to minimizing thromboembolism. Circulation. 1994;90(Suppl II):II-87–91.

    CAS  Google Scholar 

  34. Spanier T, Oz MC, Levin HR, et al. Activation of coagulation and fi fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg. 1996;112:1090–7.

    CAS  PubMed  Google Scholar 

  35. Spanier TB, Oz MC, Rose EA, Stern DM, Schmidt AM. Macrophages populating the textured surface left ventricular assist device contribute to systematic autoanticoagulation. J Heart Lung Transpl. 1998;17(83). abstract.

    Google Scholar 

  36. Morrone TM, Buck LA, Catanese KA, et al. Early progressive mobilization of patients with left ventricular assist devices is safe and optimizes recovery before heart transplantation. J Heart Lung Transplant. 1996;15:423–9.

    CAS  PubMed  Google Scholar 

  37. Frazier OH. Chronic left ventricular support with a vented electric assist device. Ann Thorac Surg. 1993;55:273–5.

    CAS  PubMed  Google Scholar 

  38. Loisance DY, Deleuze PH, Mazzucotelli JP, Le Besnerais P, Dubois-Rande JL. Clinical implantation of the wearable Baxter Novacor ventricular assist system. Ann Thorac Surg. 1994;58:551–4.

    CAS  PubMed  Google Scholar 

  39. Christensen DM. Physiology of continuous-flow pumps. AACN Adv Crit Care. 2012;23:46–54.

    PubMed  Google Scholar 

  40. Butler KC, Dow JJ, Litwak P, et al. Development of the Nimbus/University of Pittsburgh innovative ventricular assist system. Ann Thorac Surg. 1999;68:790–4.

    CAS  PubMed  Google Scholar 

  41. Anderson CA, Filsou F, Aklog L, et al. Liberal use of delayed sternal closure for postcardiotomy hemodynamic instability. Ann Thorac Surg. 2002;73:1484–8.

    PubMed  Google Scholar 

  42. May-Newman K, Enriquez-Almaguer L, Posuwattanakul P, et al. Biomechanics of the aortic valve in the continuous flow VAD-assisted heart. ASAIO J. 2010;56:301–8.

    PubMed  Google Scholar 

  43. Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intraperi-cardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125:3191–200.

    PubMed  Google Scholar 

  44. Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.

    PubMed  Google Scholar 

  45. Lee S, Kamdar F, Madlon-Kay R, et al. Effects of the HeartMate II continuous-flow left ventricular assist device on right ventricular function. J Heart Lung Transplant. 2010;29:209–15.

    PubMed  Google Scholar 

  46. Frazier OH. Current status of cardiac transplantation and left ventricular assist devices. Tex Heart Inst J. 2010;37:319–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Grifth BP, Kormos RL, Borovetz HS, et al. HeartMate II left ventricular assist system: From concept to first clinical use. Ann Thorac Surg. 2001;71:S116–20; discussion S114–S116.

    Google Scholar 

  48. Kihara S, Kawai A, Fukuda T, et al. Effects of milrinone for right ventricular failure after left ventricular assist device implantation. Heart Vessel. 2002;16:69–71.

    Google Scholar 

  49. Green EM, Givertz MM. Management of acute right ventricular failure in the intensive care unit. Curr Heart Fail Rep. 2012;9:228–35.

    PubMed  Google Scholar 

  50. Feldman D, Pamboukian SV, Teuteberg JJ, et al. International Society for Heart and Lung Transplantation: the 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32:157–87.

    PubMed  Google Scholar 

  51. Slaughter MS, Pagani FD, Rogers JG, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29:S1–39.

    PubMed  Google Scholar 

  52. Balanos GM, Talbot NP, Dorrington KL, et al. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94:1543–51.

    PubMed  Google Scholar 

  53. De Lazzari C, Darowski M, Ferrari G, et al. The impact of rotary blood pump in conjunction with mechanical ventilation on ventricular energetic parameters—numerical simulation. Methods Inf Med. 2006;45:574–83.

    PubMed  Google Scholar 

  54. Starling RC, Moazami N, Silvestry SC, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370:33–40.

    CAS  PubMed  Google Scholar 

  55. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451–60.

    PubMed  Google Scholar 

  56. Parikh NS, Cool J, Karas MG, Boehme AK, Kamel H. Stroke risk and mortality in patients with ventricular assist devices. Stroke. 2016;47:2702–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cho SM, Moazami N, Frontera JA. Stroke and intracranial hemorrhage in HeartMate II and HeartWare left ventricular assist devices: a systematic review. Neurocrit Care. 2017;27:17–25.

    PubMed  Google Scholar 

  58. Frontera JA, Starling R, Cho SM, et al. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant. 2017;36:673–83.

    PubMed  Google Scholar 

  59. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51:2163–72.

    PubMed  PubMed Central  Google Scholar 

  60. Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60:521–8.

    PubMed  Google Scholar 

  61. Takeda K, Takayama H, Colombo PC, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34:1024–32.

    PubMed  Google Scholar 

  62. Kapelios CJ, Charitos C, Kaldara E, et al. Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2015;34:1604–10.

    PubMed  Google Scholar 

  63. Rich JD, Gosev I, Patel CB, et al. The incidence, risk factors, and outcomes associated with late right-sided heart failure in patients supported with an axial-flow left ventricular assist device. J Heart Lung Transplant. 2017;36:50–8.

    PubMed  Google Scholar 

  64. Rajagopal K, Daneshmand MA, Patel CB, et al. Natural history and clinical effect of aortic valve regurgitation after left ventricular assist device implantation. J Thorac Cardiovasc Surg. 2013;145:1373–9.

    PubMed  Google Scholar 

  65. Wang TS, Hernandez AF, Felker GM, Milano CA, Rogers JG, Patel CB. Valvular heart disease in patients supported with left ventricular assist devices. Circ Heart Fail. 2014;7:215–22.

    PubMed  Google Scholar 

  66. Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.

    CAS  PubMed  Google Scholar 

  67. Hasin T, Marmor Y, Kremers W, et al. Readmissions after implantation of axial flow left ventricular assist device. J Am Coll Cardiol. 2013;61:153–63.

    PubMed  Google Scholar 

  68. Yuan N, Arnaoutakis GJ, George TJ, et al. The spectrum of complications following left ventricular assist device placement. J Card Surg. 2012;27:63–638.

    Google Scholar 

  69. Bonde P, Dew MA, Meyer D, et al. 4 National trends in readmission (REA) rates following left ventricular assist device (LVAD) therapy. J Heart Lung Transplant. 2011;30:S9.

    Google Scholar 

  70. Tabit CE, Chen P, Kim GH, et al. Elevated angiopoietin-2 level in patients with continuous-flow left ventricular assist devices leads to altered angiogenesis and is associated with higher nonsurgical bleeding. Circulation. 2016;134:141–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Suarez J, Patel CB, Felker GM, Becker R, Hernandez AF, Rogers JG. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4:779–84.

    PubMed  Google Scholar 

  72. Dakik HK, McGhan AA, Chiu ST, et al. The diagnostic yield of repeated endoscopic evaluation in patients with gastrointestinal bleeding and left ventricular assist devices. Dig Dis Sci. 2016;61:1603–10.

    PubMed  Google Scholar 

  73. Kato TS, Ota T, Schulze PC, et al. Asymmetric pattern of cerebrovascular lesions in patients after left ventricular assist device implantation. Stroke. 2012;43:872–4.

    PubMed  Google Scholar 

  74. Nakajima I, Kato TS, Komamura K, et al. Pre- and post-operative risk factors associated with cerebrovascular accidents in patients supported by left ventricular assist device. Circ J. 2011;75:1138–46.

    PubMed  Google Scholar 

  75. Aissaoui N, Borgermann J, Gummert J, et al. HeartWare continuous-flow ventricular assist device thrombosis: the bad Oeynhausen experience. J Thorac Cardiovasc Surg. 2012;143:e37–9.

    PubMed  Google Scholar 

  76. Rothenburger M, Wilhelm MJ, Hammel D, et al. Treatment of thrombus formation associated with the MicroMed DeBakey VAD using recombinant tissue plasminogen activator. Circulation. 2002;106:I189–92.

    PubMed  Google Scholar 

  77. John R, Kamdar F, Liao K, et al. Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J Thorac Cardiovasc Surg. 2008;136:1318–23.

    PubMed  Google Scholar 

  78. Meyer AL, Malehsa D, Bara C, et al. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail. 2010;3:675–81.

    PubMed  Google Scholar 

  79. Tang GH, Kim MC, Pinney SP, et al. Failed repeated thrombolysis requiring left ventricular assist device pump exchange. Catheter Cardiovas Interv. 2013;81:1072–4.

    Google Scholar 

  80. Slaughter MS. Hematologic effects of continuous flow left ventricular assist devices. J Cardiovasc Transl Res. 2010;3:618–24.

    PubMed  Google Scholar 

  81. Jessup M, Goldstein D, Ascheim DD, et al. Risk for bleeding after MSCD implant: an analysis of 2358 patients in INTERMACS. J Heart Lung Transplant. 2011;30(Suppl I):S9.

    Google Scholar 

  82. Suarez J, Patel CB, Felker GM, et al. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4:779–84.

    PubMed  Google Scholar 

  83. Pagani FD, Miller LW, Russell SD, et al. Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol. 2009;54:312–21.

    PubMed  Google Scholar 

  84. Genovese EA, Dew MA, Teuteberg JJ, et al. Incidence and patterns of adverse event onset during the first 60 days after ventricular assist device implantation. Ann Thorac Surg. 2009;88:1162–70.

    PubMed  PubMed Central  Google Scholar 

  85. Crow S, John R, Boyle A, et al. Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg. 2009;137:208–15.

    CAS  PubMed  Google Scholar 

  86. Wilson TJ, Stetler WR Jr, Al-Holou WN, et al. Management of intra-cranial hemorrhage in patients with left ventricular assist devices. J Neurosurg. 2013;118:1063–8.

    PubMed  Google Scholar 

  87. Tsukui H, Abla A, Teuteberg JJ, et al. Cerebrovascular accidents in patients with a ventricular assist device. J Thorac Cardiovasc Surg. 2007;134:114–23.

    PubMed  Google Scholar 

  88. Kato TS, Schulze PC, Yang J, et al. Pre-operative and post-operative risk factors associated with neurologic complications in patients with advanced heart failure supported by a left ventricular assist device. J Heart Lung Transplant. 2012;31:1–8.

    PubMed  Google Scholar 

  89. Rossi M, Serraino GF, Jiritano F, et al. What is the optimal anticoagulation in patients with a left ventricular assist device? Interact Cardiovasc Thorac Surg. 2012;15:733–40.

    PubMed  PubMed Central  Google Scholar 

  90. Pereira NL, Chen D, Kushwaha SS, et al. Discontinuation of anti-thrombotic therapy for a year or more in patients with continuous-flow left ventricular assist devices. Interact Cardiovasc Thorac Surg. 2010;11:503–5.

    PubMed  PubMed Central  Google Scholar 

  91. Saito S, Westaby S, Piggott D, et al. Reliable long-term non-pulsatile circulatory support without anticoagulation. Eur J Cardiothorac Surg. 2001;19:678–83.

    CAS  PubMed  Google Scholar 

  92. Kirklin JK, Naftel DC, Kormos RL, et al. Second INTERMACS annual report: more than 1,000 primary left ventricular assist device implants. J Heart Lung Transplant. 2010;29:1–10.

    PubMed  PubMed Central  Google Scholar 

  93. Slaughter MS, Sobieski MA 2nd, Graham JD, et al. Platelet activation in heart failure patients supported by the HeartMate II ventricular assist device. Int J Artif Organs. 2011;34:461–8.

    CAS  PubMed  Google Scholar 

  94. Boyle AJ, Russell SD, Teuteberg JJ, et al. Low thromboembolism and pump thrombosis with the HeartMate II left ventricular assist device: analysis of outpatient anti-coagulation. J Heart Lung Transplant. 2009;28:881–7.

    PubMed  Google Scholar 

  95. Slaughter MS, Naka Y, John R, et al. Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long-term warfarin therapy. J Heart Lung Transplant. 2010;29:616–24.

    PubMed  Google Scholar 

  96. Opkara VK, Kondareddy S, Malik F, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90:1270–7.

    Google Scholar 

  97. Litzler PY, Manrique A, Etienne M, et al. Leukocyte SPECT/CT for detecting infection of left-ventricular-assist devices: preliminary results. J Nucl Med. 2010;51:1044–8.

    PubMed  Google Scholar 

  98. Jakovljevic DG, George RS, Nunan D, et al. The impact of acute reduction of continuous-flow left ventricular assist device support on cardiac and exercise performance. Heart. 2010;96:1390–5.

    PubMed  Google Scholar 

  99. Acharya MN, Som R, Tsui S. What is the optimum antibiotic prophylaxis in patients undergoing implantation of a left ventricular assist device? Interact Cardiovasc Thorac Surg. 2012;14:209–14.

    PubMed  Google Scholar 

  100. Chamogeorgakis T, Koval CE, Smedira NG, et al. Outcomes associated with surgical management of infections related to the HeartMate II left ventricular assist device: implications for destination therapy patients. J Heart Lung Transplant. 2012;31:904–6.

    PubMed  Google Scholar 

  101. Holman WL, Rayburn BK, DC MG, et al. Infection in ventricular assist devices: prevention and treatment. Ann Thorac Surg. 2003;75:S48–57.

    PubMed  Google Scholar 

  102. Shafi AE, Chamogeorgakis TP, Gonzalez-Stawinski G. Omental flap transposition with intra-abdominal relocation for LVAD pump-pocket infection. J Heart Lung Transplant. 2011;30:1421–2.

    Google Scholar 

  103. Baradarian S, Stahovich M, Krause S, et al. Case series: clinical management of persistent mechanical assist device driveline drainage using vacuum-assisted closure therapy. ASAIO J. 2006;52:354–6.

    PubMed  Google Scholar 

  104. Garatti A, Giuseppe B, Russo CF, et al. Drive-line exit-site infection in a patient with axial-flow pump support: successful management using vacuum-assisted therapy. J Heart Lung Transplant. 2007;26:956–9.

    PubMed  Google Scholar 

  105. Zierer A, Melby SJ, Voeller RK, et al. Late- onset driveline infections: the Achilles’ heel of prolonged left ventricular assist device support. Ann Thorac Surg. 2007;84:515–20.

    PubMed  Google Scholar 

  106. Topkara VK, Kondareddy S, Malik F, et al. Infectious complications in patients with left ventricular assist device: etiology and outcomes in the continuous-flow era. Ann Thorac Surg. 2010;90:1270–7.

    PubMed  Google Scholar 

  107. Simeon S, Flecher E, Revest M, et al. Left ventricular assist device-related infections: a multicentric study. Clin Microbiol Infect. 2017;23(10):748–51.

    CAS  PubMed  Google Scholar 

  108. Andersen M, Videbaek R, Boesgaard S, et al. Incidence of ventricular arrhythmias in patients on long-term support with a continuous-flow assist device (HeartMate II). J Heart Lung Transplant. 2009;28:733–5.

    PubMed  Google Scholar 

  109. Rogers JG, Aaronson KD, Boyle AJ, et al. Continuous flow left ventricular assist device improves functional capacity and quality of life of advanced heart failure patients. J Am Coll Cardiol. 2010;55:1826–34.

    PubMed  Google Scholar 

  110. Boyle A. Arrhythmias in patients with ventricular assist devices. Curr Opin Cardiol. 2012;27:13–8.

    PubMed  Google Scholar 

  111. Tuzun E, Rutten M, Dat M, et al. Continuous-flow cardiac assistance: effects on aortic valve function in a mock loop. J Surg Res. 2011;171:443–7.

    PubMed  Google Scholar 

  112. Maury P, Delmas C, Trouillet C, et al. First experience of percutaneous radio-frequency ablation for atrial flutter and atrial fibrillation in a patient with HeartMate II left ventricular assist device. J Interv Card Electrophysiol. 2010;29:63–7.

    PubMed  Google Scholar 

  113. Enriquez AD, Calenda B, Gandhi PU, Nair AP, Anyanwu AC, Pinney SP. Clinical impact of atrial fibrillation in patients with the HeartMate II left ventricular assist device. J Am Coll Cardiol. 2014;64:1883–90.

    PubMed  Google Scholar 

  114. Nakahara S, Chien C, Gelow J, Dalouk K, Henrikson CA, Mudd J, et al. Ventricular arrhythmias after left ventricular assist device. Circ Arrhythm Electrophysiol. 2013;6:648–54.

    PubMed  Google Scholar 

  115. Vollkron M, Voitl P, Ta J, Wieselthaler G, Schima H. Suction events during left ventricular support and ventricular arrhythmias. J Heart Lung Transplant. 2007;26:819–25.

    PubMed  Google Scholar 

  116. DeBakey ME, Teitel ER. Use of the MicroMed DeBakey VAD for the treatment of end-stage heart failure. Expert Rev Med Devices. 2005;2:137–40.

    PubMed  Google Scholar 

  117. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357:885–96.

    CAS  PubMed  Google Scholar 

  118. Timms D. A review of clinical ventricular assist devices. Med Eng Phys. 2011;33:1041–7.

    PubMed  Google Scholar 

  119. Morgan JA, Paone G, Nemeh HW, et al. Non-cardiac surgery in patients on long-term left ventricular assist device support. J Heart Lung Transplant. 2012;31:757–63.

    PubMed  Google Scholar 

  120. Yuzefpolskaya M, Uriel N, Flannery M, et al. Advanced cardiovascular life support algorithm for the management of the hospitalized unresponsive patient on continuous flow left ventricular assist device support outside the intensive care unit. Eur Heart J. 2016;5:522–6.

    Google Scholar 

  121. Barbara DW, Wetzel DR, Pulido JN, et al. The perioperative management of patients with left ventricular assist devices undergoing noncardiac surgery. Mayo Clinic Proc. 2013;88:674–82.

    Google Scholar 

  122. Rottenberg EM, Heard J, Hamlin R, et al. Abdominal only CPR during cardiac arrest for a patient with an LVAD during resternotomy: a case report. J Cardiothorac Surg. 2011;6:91.

    PubMed  PubMed Central  Google Scholar 

  123. Paradis NA, Martin GB, Rivers EP, et al. Coronary perfusion pressure and the return of spontaneous circulation in human cardiopulmonary resuscitation. JAMA. 1990;263:1106–13.

    CAS  PubMed  Google Scholar 

  124. Mathis MR, Sathishkumar S, Kheterpal S, et al. Complications, risk factors, and staffing patterns for noncardiac surgery in patients with left ventricular assist devices. Anesthesiology. 2017;126:450–60.

    PubMed  PubMed Central  Google Scholar 

  125. Rasalingam R, Johnson SN, Bilhorn KR, et al. Transthoracic echo-cardiographic assessment of continuous-flow left ventricular assist devices. J Am Soc Echocardiogr. 2011;24:135–48.

    PubMed  Google Scholar 

  126. Tedford RJ, Hemnes AR, Russell SD, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1:213–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chou, YT. (2020). Therapy Management of VADs. In: Yang, M. (eds) Artificial Hearts. Springer, Singapore. https://doi.org/10.1007/978-981-15-4378-4_9

Download citation

Publish with us

Policies and ethics