Skip to main content
Log in

Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the possible photoprotection mechanisms of cyclic and linear electron flux (CEF and LEF) under specific high temperature and high light (HH) stress.

Methods

Six-leaf-stage tomato seedlings (“Liaoyuanduoli”, n=160) were divided into four parts: Part 1, served as control under 25 °C, 500 μmol/(m2·s); Part 2, spayed with distilled water (H2O) under 35 °C, 1000 μmol/(m2·s) (HH); Part 3, spayed with 100 μmol/L diuron (DCMU, CEF inhibitor) under HH; Part 4, spayed with 60 μmol/L methyl viologen (MV, LEF inhibitor) under HH. Energy conversion, photosystem I (PSI), and PSII activity, and trans-thylakoid membrane proton motive force were monitored during the treatment of 5 d and of the recovering 10 d.

Results

HH decreased photochemical reaction dissipation (P) and the maximal photochemical efficiency of PSII (F v/F m), and increased the excitation energy distribution coefficient of PSII (β); DCMU and MV aggravated the partition imbalance of the excitation energy (γ) and the photoinhibition degree. With prolonged DCMU treatment time, electron transport rate and quantum efficiency of PSI (ETRI and Y I) significantly decreased whereas acceptor and donor side limitation of PSI (Y NA and Y ND) increased. MV led to a significant decline and accession of yield of regulated and non-regulated energy Y NPQ and Y NO, respectively. Membrane integrity and ATPase activity were reduced by HH stress, and DCMU and MV enhanced inhibitory actions.

Conclusion

The protective effects of CEF and LEF were mediated to a certain degree by meliorations in energy absorption and distribution as well as by maintenance of thylakoid membrane integrity and ATPase activity.

中文概要

题目

线性电子传递和环式电子传递对缓解番茄亚高温强光胁迫的响应

目的

探讨特定高温和强光逆境下番茄叶片中的环式电子传递(CEF)和线性电子传递(LEF)的光保护机制。

创新点

通过引入电子抑制剂的方法系统分析了CEF 和LEF 对亚高温强光胁迫的响应。

方法

将品种为“辽园多丽”的番茄幼苗(n=160)平 均分成四组(表1):组1,于常温常光照25 °C, 500 μmol/(m2·s)条件下培养并作为对照;组2, 叶片喷施蒸馏水并在亚高温强光35 °C , 1000 μmol/(m2·s)(HH)条件下培养;组3,HH 条件下叶片喷施100 μmol/L 敌草隆(DCMU,CEF 抑制剂);组4,HH 条件下叶片喷施60 μmol/L 甲基紫精(MV,LEF 抑制剂)。在处理5 d 及恢 复10 d期间,分别测定番茄幼苗叶片的光能吸收、 激发能分配、光系统活性、类囊体膜完整性和ATP 酶活性等指标。

结论

CEF 和LEF 通过一定程度上改善叶片光能吸收及 激发能分配,并且维持类囊体膜较高完整性和 ATP 酶活性,从而维持光系统活性并减少光抑制 和光破坏程度。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal, D., Allakhverdiev, S.I., Jajoo, A., 2016. Cyclic electron flow plays an important role in protection of spinach leaves under high temperature stress. Russ. J. Plant Physiol., 63(2): 210–215. http://dx.doi.org/10.1134/S1021443716020023

    Article  CAS  Google Scholar 

  • Apostolova, E.L., Dobrikova, A.G., Ivanova, P.I., et al., 2006. Relationship between the organization of the PSII super complex and the functions of the photosynthetic apparatus. J. Photochem. Photobiol. B, 83(2): 114–122. http://dx.doi.org/10.1016/j.jphotobiol.2005.12.012

    Article  CAS  PubMed  Google Scholar 

  • Bailey, S., Horton, P., Walters, R.G., 2004. Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta, 218(5): 793–802. http://dx.doi.org/10.1007/s00425-003-1158-5

    Article  CAS  PubMed  Google Scholar 

  • Bailey, S., Melis, A., Mackey, K.R., et al., 2008. Alternative photosynthetic electron flow to oxygen in marine Synechococcus. Biochim. Biophys. Acta, 1777(3): 269–276. http://dx.doi.org/10.1016/j.bbabio.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Bailleul, B., Cardol, P., Breyton, C., et al., 2010. Electrochromism: a useful probe to study algal photosynthesis. Photosynth. Res., 106(1-2): 179–189. http://dx.doi.org/10.1007/s11120-010-9579-z

    Article  CAS  PubMed  Google Scholar 

  • Bilger, W., Schreiber, U., 1990. Chlorophyll luminescence as an indicator of stress-induced damage to the photosynthetic apparatus. Effects of heat-stress in isolated chloroplasts. Photosynth. Res., 25(3): 161–171. http://dx.doi.org/10.1007/BF00033158

    Article  CAS  PubMed  Google Scholar 

  • Bilger, W., Bjorkman, O., Thayer, S.S., 1989. Light-induced spectral absorbance changes in relation to photosynthesis and the epoxidation state of xanthophyll cycle components in cotton leaves. Plant Physiol., 91(2): 542–551. http://dx.doi.org/10.1104/pp.91.2.542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose, S., Kuila, T., Nguyen, T., et al., 2011. Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog. Polym. Sci., 36(6): 813–843. http://dx.doi.org/10.1016/j.progpolymsci.2011.01.003

    Article  CAS  Google Scholar 

  • Braun, G., Malkin, S., 1990. Regulation of the imbalance in light excitation between photosystem IIand photosystem I by cations and by the energized state of the thylakoid membrane. Biochim. Biophys. Acta, 1017(1): 79–90. http://dx.doi.org/10.1016/0005-2728(90)90181-3

    Article  CAS  Google Scholar 

  • Brestic, M., Zivcak, M., Kunderlikova, K., et al., 2016. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines. Photosynth. Res., 62(3): 281–283. http://dx.doi.org/10.1007/s11120-016-0249-7

    Google Scholar 

  • Camejo, D., Rodriguez, P., Morales, M.A., et al., 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol., 162(3): 281–289. http://dx.doi.org/10.1016/j.jplph.2004.07.014

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Jia, H., Tian, Q., et al., 2012. Protecting effect of phosphorylation on oxidative damage of D1 protein by down-regulating the production of superoxide anion in photosystem IImembranes under high light. Photosynth. Res., 112(2): 141–148. http://dx.doi.org/10.1007/s11120-012-9750-9

    Article  CAS  PubMed  Google Scholar 

  • Cruz, J.A., Sacksteder, C.A., Kanazawa, A., et al., 2001. Contribution of electric field to steady-state transthylakoid proton motive force (PMF) in vitro and in vivo. control of parsing into and pH by ionic strength. Biochemistry, 40(5): 1226–1237. http://dx.doi.org/10.1021/bi0018741

    CAS  PubMed  Google Scholar 

  • de Filippis, L.F., Ziegler, H., 1993. Effect of sublethal concentrations of zinc, cadmium and mercury on the photosynthetic carbon reduction cycle of Euglena. J. Plant Physiol., 142(2): 167–172. http://dx.doi.org/10.1016/S0176-1617(11)80958-2

    Article  Google Scholar 

  • de Filippis, L.F., Hampp, R., Ziegler, H., 1981. The effects of sublethal concentrations of zinc, cadmium and mercury on Euglena. Arch. Microbiol., 128(4): 407–411. http://dx.doi.org/10.1007/BF00405922

    Article  Google Scholar 

  • de la Rosa-Manzano, E., Andrade, J.L., Garcia-Mendoza, E., et al., 2015. Photoprotection related to xanthophyll cycle pigments in epiphytic orchids acclimated at different light microenvironments in two tropical dry forests of the Yucatan Peninsula, Mexico. Planta, 242(6): 1425–1438. http://dx.doi.org/10.1007/s00425-015-2383-4

    Article  PubMed  Google Scholar 

  • Deng, C., Zhang, D., Pan, X., et al., 2013. Toxic effects of mercury on PSI and PSII activities, membrane potential and transthylakoid proton gradient in Microsorium pteropus. J. Photochem. Photobiol. B, 127:1–7. http://dx.doi.org/10.1016/j.jphotobiol.2013.07.012

    Article  CAS  PubMed  Google Scholar 

  • Dzbek, J., Korzeniewski, B., 2008. Control over the contribution of the mitochondrial membrane potential (??) and proton gradient (?pH) to the proton motive force (?p). In silico studies. J. Biol. Chem., 283(48): 33232–33239. http://dx.doi.org/10.1074/jbc.M802404200

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Neukermans, J., Queval, G., et al., 2012. Photosynthetic control of electron transport and the regulation of gene expression. J. Exp. Bot., 63(4): 1637–1641. http://dx.doi.org/10.1093/jxb/ers013

    Article  CAS  PubMed  Google Scholar 

  • Gao, S., Niu, J., Chen, W., et al., 2013. The physiological links of the increased photosystem IIactivity in moderately desiccated Porphyra haitanensis (Bangiales, Rhodophyta) to the cyclic electron flow during desiccation and rehydration. Photosynth. Res., 116(1): 45–54. http://dx.doi.org/10.1007/s11120-013-9892-4

    Article  CAS  PubMed  Google Scholar 

  • Guissé, B., Srivastava, A., Strasser, R.J., 1995. Effects of high temperature and water stress on the polyphasic chlorophyll a fluorescence transient of potato leaves. J. Gansu Agric. Univ., 324(3): 3877–3880. http://dx.doi.org/10.1007/978-94-009-0173-5_914

    Google Scholar 

  • Heber, U., Gerst, U., Krieger, A., et al., 1995. Coupled cyclic electron transport in intact chloroplasts and leaves of C3 plants: does it exist? If so, what is its function? Photosynth. Res., 46(1-2): 269–275. http://dx.doi.org/10.1007/BF00020440

    CAS  Google Scholar 

  • Hendrickson, L., Furbank, R.T., Chow, W.S., 2004. A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynth. Res., 82(1): 73–81. http://dx.doi.org/10.1023/B:PRES.0000040446.87305.f4

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Zhang, S.B., Cao, K.F., 2010a. The different effects of chilling stress under moderate light intensity on photosystem IIcompared with photosystem I and subsequent recovery in tropical tree species. Photosynth. Res., 103(3): 175–182. http://dx.doi.org/10.1007/s11120-010-9539-7

    Article  CAS  PubMed  Google Scholar 

  • Huang, W., Zhang, S.B., Cao, K.F., 2010b. Stimulation of cyclic electron flow during recovery after chillinginduced photoinhibition of PSII. Plant Cell Physiol., 51(11): 1922–1928. http://dx.doi.org/10.1093/pcp/pcq144

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis, N.E., Kotzabasis, K., 2014. Polyamines in chemiosmosis in vivo: a cunning mechanism for the regulation of ATP synthesis during growth and stress. Front. Plant Sci., 5:71. http://dx.doi.org/10.3389/fpls.2014.00071

    Article  PubMed  PubMed Central  Google Scholar 

  • Ioannidis, N.E., Cruz, J.A., Kotzabasis, K., et al., 2012. Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS ONE, 7(1): e29864. http://dx.doi.org/10.1371/journal.pone.0029864

    Article  Google Scholar 

  • Ivanov, A.G., Morgan-Kiss, R.M., Krol, M., et al., 2015. Photoinhibition of photosystem I in a pea mutant with altered LHCII organization. J. Photochem. Photobiol. B, 152(3): 335–346. http://dx.doi.org/10.1016/j.jphotobiol.2015.08.018

    Article  CAS  PubMed  Google Scholar 

  • Jiang, H., Qiu, B., 2010. Inhibition of photosynthesis by UV-B exposure and its repair in the bloom-forming cyanobacterium Microcystis aeruginosa. J. Appl. Phycol., 23(4): 691–696. http://dx.doi.org/10.1007/s10811-010-9562-2

    Article  Google Scholar 

  • Jin, S.H., Li, X.Q., Hu, J.Y., et al., 2009. Cyclic electron flow around photosystem I is required for adaptation to high temperature in a subtropical forest tree, Ficus concinna. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 10(10): 784–790. http://dx.doi.org/10.1631/jzus.B0820348

    Article  CAS  Google Scholar 

  • Johnson, G.N., 2005. Cyclic electron transport in C3 plants: fact or artefact? J. Exp. Bot., 56(411): 407–416. http://dx.doi.org/10.1093/jxb/eri106

    Article  CAS  Google Scholar 

  • Johnson, M.P., Ruban, A.V., 2014. Rethinking the existence of a steady-state ?? component of the proton motive force across plant thylakoid membranes. Photosynth. Res., 119(1-2): 233–242. http://dx.doi.org/10.1007/s11120-013-9817-2

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa, A., Kramer, D.M., 2002. In vivo modulation of nonphotochemical exciton quenching (NPQ) by regulation of the chloroplast ATP synthase. Proc. Natl. Acad. Sci. USA, 99(20): 12789–12794. http://dx.doi.org/10.1073/pnas.182427499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klughammer, C., Schreiber, U., 2008. Complementary PSII quantum yields calculated from simple fluorescence parameters measured by PAM fluorometry and the Saturation Pulse method. PAM Appl. Notes, 1:27–35.

    Google Scholar 

  • Kramer, D.M., Avenson, T.J., Edwards, G.E., 2004. Dynamic flexibility in the light reactions of photosynthesis governed by both electron and proton transfer reactions. Trends Plant Sci., 9(7): 349–357. http://dx.doi.org/10.1016/j.tplants.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  • Liu, D., Li, S., Islam, E., et al., 2015. Lead accumulation and tolerance of Moso bamboo (Phyllostachys pubescens) seedlings: applications of phytoremediation. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 16(2): 123–130. http://dx.doi.org/10.1631/jzus.B1400107

    Article  CAS  Google Scholar 

  • Liu, D.F., Zhang, D., Liu, G.Q., et al., 2013. Influence of heat stress on leaf ultrastructure, photosynthetic performance, and ascorbate peroxidase gene expression of two pear cultivars (Pyrus pyrifolia). J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 14(12): 1070–1083. http://dx.doi.org/10.1631/jzus.B1300094

    Article  CAS  Google Scholar 

  • Miyake, C., Shinzaki, Y., Miyata, M., et al., 2004. Enhancement of cyclic electron flow around PSI at high light and its contribution to the induction of nonphotochemical quenching of chl fluorescence in intact leaves of tobacco plants. Plant Cell Physiol., 45(10): 1426–1433. http://dx.doi.org/10.1093/pcp/pch163

    Article  CAS  PubMed  Google Scholar 

  • Munekage, Y., Hojo, M., Meurer, J., et al., 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell, 110(3): 361–371. http://dx.doi.org/10.1016/S0092-8674(02)00867-x

    Article  CAS  PubMed  Google Scholar 

  • Pagliano, C., Raviolo, M., Dalla Vecchia, F., et al., 2006. Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). J. Photochem. Photobiol. B, 84(1): 70–78. http://dx.doi.org/10.1016/j.jphotobiol.2006.01.012

    Article  CAS  PubMed  Google Scholar 

  • Partelli, F.L., Batista-Santos, P., Scotti-Campos, P., et al., 2011. Characterization of the main lipid components of chloroplast membranes and cold induced changes in Coffea spp. Environ. Exp. Bot., 74(2)194–204. http://dx.doi.org/10.1016/j.envexpbot.2011.06.001

    Article  CAS  Google Scholar 

  • Pospisil, P., 2012. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II.Biochim. Biophys. Acta, 1817(1): 218–231. http://dx.doi.org/10.1016/j.bbabio.2011.05.017

    CAS  Google Scholar 

  • Schreiber, U., Klughammer, C., 2008. New accessory for the Dual-PAM-100: the P515/535 module and examples of its application. PAM Appl. Notes, 1:1–10.

    Google Scholar 

  • Setif, P., 2015. Electron-transfer kinetics in cyanobacterial cells: methyl viologen is a poor inhibitor of linear electron flow. Biochim. Biophys. Acta, 1847(2): 212–222. http://dx.doi.org/10.1016/j.bbabio.2014.10.008

    Article  CAS  PubMed  Google Scholar 

  • Shikanai, T., 2007. Cyclic electron transport around photosystem I: genetic approaches. Annu. Rev. Plant Biol., 58:199–217. http://dx.doi.org/10.1146/annurev.arplant.58.091406.110525

    Article  CAS  PubMed  Google Scholar 

  • Shikanai, T., 2014. Central role of cyclic electron transport around photosystem I in the regulation of photosynthesis. Curr. Opin. Biotechnol., 26:25–30. http://dx.doi.org/10.1016/j.copbio.2013.08.012

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, S., Badger, M.R., 2011. Photoprotection in plants: a new light on photosystem IIdamage. Trends Plant Sci., 16(1): 53–60. http://dx.doi.org/10.1016/j.tplants.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  • Tu, W., Li, Y., Liu, W., et al., 2015. Spring ephemerals adapt to extremely high light conditions via an unusual stabilization of photosystem II.Front. Plant Sci., 6:1189. http://dx.doi.org/10.3389/fpls.2015.01189

    Google Scholar 

  • Wang, P., Ye, J., Shen, Y., et al., 2006. The role of chloroplast NAD(P)H dehydrogenase in protection of tobacco plant against heat stress. Sci. China C Life Sci., 49(4): 311–321. http://dx.doi.org/10.1007/s11427-006-2005-2

    Article  CAS  PubMed  Google Scholar 

  • Yamori, W., Sakata, N., Suzuki, Y., et al., 2011. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice. Plant J., 68(6): 966–976. http://dx.doi.org/10.1111/j.1365-313X.2011.04747.x

    Article  CAS  PubMed  Google Scholar 

  • Yamori, W., Makino, A., Shikanai, T., 2016. A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice. Sci. Rep., 6:20147. http://dx.doi.org/10.1038/srep20147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yi, X., McChargue, M., Laborde, S., et al., 2005. The manganese-stabilizing protein is required for photosystem IIassembly/stability and photoautotrophy in higher plants. J. Biol. Chem., 280(16): 16170–16174. http://dx.doi.org/10.1074/jbc.M501550200

    Article  CAS  PubMed  Google Scholar 

  • Yin, H.L., Tian, C.Y., 2013. Effects of nitrogen regulation on photosystem IIchlorophyll fluorescence characteristics of functional leaves in sugar beet (Beta vulgaris) under salt environment. Chin. J. Plant Ecol., 37(2): 122–131. http://dx.doi.org/10.3724/SP.J.1258.2013.00013

    Article  CAS  Google Scholar 

  • Zhang, G., Liu, Y., Ni, Y., et al., 2014. Exogenous calcium alleviates low night temperature stress on the photosynthetic apparatus of tomato leaves. PLoS ONE, 9(5): e97322. http://dx.doi.org/10.1371/journal.pone.0097322

    Article  Google Scholar 

  • Zhou, Y.H., Huang, L.F., Yu, J.Q., 2004. Effects of sustained chilling and low light on gas exchange, chlorophyll fluorescence quenching and absorbed light allocation in cucumber leaves. J. Plant Physiol. Mol. Biol., 30(2): 153–160 (in Chinese).

    CAS  Google Scholar 

  • Zhou, Y.H., Lam, H.M., Zhang, J.H., 2007. Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J. Exp. Bot., 58(5): 1207–1217. http://dx.doi.org/10.1093/jxb/erl291

    Article  CAS  PubMed  Google Scholar 

  • Zhou, Y.H., Zhang, Y.L., Wang, X.M., et al., 2011. Effects of nitrogen form on growth, CO2 assimilation, chlorophyll fluorescence, and photosynthetic electron allocation in cucumber and rice plants. J. Zhejiang Univ.-Sci. B (Biomed. & Biotechnol.), 12(2): 126–134. http://dx.doi.org/10.1631/jzus.B1000059

    Article  CAS  Google Scholar 

  • Zivcak, M., Brestic, M., Kalaji, H.M., et al., 2014. Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynth. Res., 119(3): 339–354. http://dx.doi.org/10.1007/s11120-014-9969-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-feng Liu or Tian-lai Li.

Additional information

Project supported by the China Agriculture Research System (No. CARS-25), the National Natural Science Foundation of China (No. 31301813), and the National Key Technologies R & D Program of China (No. 2015103003)

ORCID: Tao LU, http://orcid.org/0000-0003-0098-4356

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, T., Shi, Jw., Sun, Zp. et al. Response of linear and cyclic electron flux to moderate high temperature and high light stress in tomato. J. Zhejiang Univ. Sci. B 18, 635–648 (2017). https://doi.org/10.1631/jzus.B1600286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600286

Keywords

CLC number

关键词

Navigation