Skip to main content
Log in

Molecular signal networks and regulating mechanisms of the unfolded protein response

内质网应激的信号通路以及调控机制

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Within the cell, several mechanisms exist to maintain homeostasis of the endoplasmic reticulum (ER). One of the primary mechanisms is the unfolded protein response (UPR). In this review, we primarily focus on the latest signal webs and regulation mechanisms of the UPR. The relationships among ER stress, apoptosis, and cancer are also discussed. Under the normal state, binding immunoglobulin protein (BiP) interacts with the three sensors (protein kinase RNA-like ER kinase (PERK), activating transcription factor 6 (ATF6), and inositol-requiring enzyme 1α (IRE1α)). Under ER stress, misfolded proteins interact with BiP, resulting in the release of BiP from the sensors. Subsequently, the three sensors dimerize and autophosphorylate to promote the signal cascades of ER stress. ER stress includes a series of positive and negative feedback signals, such as those regulating the stabilization of the sensors/BiP complex, activating and inactivating the sensors by autophosphorylation and dephosphorylation, activating specific transcription factors to enable selective transcription, and augmenting the ability to refold and export. Apart from the three basic pathways, vascular endothelial growth factor (VEGF)-VEGF receptor (VEGFR)-phospholipase C-γ (PLCγ)-mammalian target of rapamycin complex 1 (mTORC1) pathway, induced only in solid tumors, can also activate ATF6 and PERK signal cascades, and IRE1α also can be activated by activated RAC-alpha serine/threonine-protein kinase (AKT). A moderate UPR functions as a pro-survival signal to return the cell to its state of homeostasis. However, persistent ER stress will induce cells to undergo apoptosis in response to increasing reactive oxygen species (ROS), Ca2+ in the cytoplasmic matrix, and other apoptosis signal cascades, such as c-Jun N-terminal kinase (JNK), signal transducer and activator of transcription 3 (STAT3), and P38, when cellular damage exceeds the capacity of this adaptive response.

概 要

文章阐述了内质网应激信号通路及其调控机制; 补充了最新的调控通路; 探讨了内质网应激与肿瘤发生和细胞凋亡的关系。同时将内质网信号通路全面概括到一张图中, 综合阐述了未折叠蛋白反应(UPR)的调控机制, 并把内质网应激与细胞凋亡、肿瘤发生关联到一起, 方便读者更好地了解与学习内质网应激。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Awad, W., Estrada, I., Shen, Y., et al., 2008. BiP mutants that are unable to interact with endoplasmic reticulum Dnaj proteins provide insights into interdomain interactions in BiP. PNAS, 105(4):1164–1169. http://dx.doi.org/10.1073/pnas.0702132105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bevilacqua, E., Wang, X., Majumder, M., et al., 2010. eIF2α phosphorylation tips the balance to apoptosis during osmotic stress. J. Biol. Chem., 285(22):17098–17111. http://dx.doi.org/10.1074/jbc.M110.109439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Binet, F., Mawambo, G., Sitaras, N., et al., 2013. Neuronal ER stress impedes myeloid-cell-induced vascular regeneration through IRE1α degradation of netrin-1. Cell Metab., 17(3):353–371. http://dx.doi.org/10.1016/j.cmet.2013.02.003

    Article  CAS  PubMed  Google Scholar 

  • Bommiasamy, H., Back, S.H., Fagone, P., et al., 2009. ATF6α induces XBP1-independent expansion of the endoplasmic reticulum. J. Cell Sci., 122(10):1626–1636. http://dx.doi.org/10.1242/jcs.045625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braakman, I., Bulleid, N.J., 2011. Protein folding and modification in the mammalian endoplasmic reticulum. Annu. Rev. Biochem., 80(1):71–99. http://dx.doi.org/10.1146/annurev-biochem-062209-093836

    Article  CAS  PubMed  Google Scholar 

  • Cao, S.S., Zimmermann, E.M., Chuang, B.M., et al., 2013. The unfolded protein response and chemical chaperones reduce protein misfolding and colitis in mice. Gastroenterology, 144(5):S–989. http://dx.doi.org/10.1053/j.gastro.2013.01.023

    Article  Google Scholar 

  • Chaudhari, N., Talwar, P., Parimisetty, A., et al., 2014. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front. Cell. Neurosci., 8:213. http://dx.doi.org/10.3389/fncel.2014.00213

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, L., Xu, S., Liu, L., et al., 2014a. Cab45S inhibits the ER stress-induced IRE1-JNK pathway and apoptosis via GRP78/BiP. Cell Death Dis., 5(5):e1219. http://dx.doi.org/10.1038/cddis.2014.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, X., Iliopoulos, D., Zhang, Q., et al., 2014b. XBP1 promotes triple-negative breast cancer by controlling the HIF1α pathway. Nature, 508(7494):103–107. http://dx.doi.org/10.1038/nature13119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung, K.T., Shen, Y., Hendershot, L.M., 2002. Bap, a mammalian BiP-associated protein, is a nucleotide exchange factor that regulates the ATPase activity of BiP. J. Biol. Chem., 277(49):47557–47563. http://dx.doi.org/10.1074/jbc.M208377200

    Article  CAS  PubMed  Google Scholar 

  • Cullinan, S.B., Zhang, D., Hannink, M., et al., 2003. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol., 23(20):7198–7209. http://dx.doi.org/10.1128/MCB.23.20.7198-7209.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng, J., Lu, P.D., Zhang, Y., et al., 2004. Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol. Cell. Biol., 24(23):10161–10168. http://dx.doi.org/10.1128/MCB.24.23.10161-10168.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drogat, B., Auguste, P., Nguyen, D.T., et al., 2007. IRE1 signaling is essential for ischemia-induced vascular endothelial growth factor-A expression and contributes to angiogenesis and tumor growth in vivo. Cancer Res., 67(14):6700–6707. http://dx.doi.org/10.1158/0008-5472.CAN-06-3235

    Article  CAS  PubMed  Google Scholar 

  • Du, K., Takahashi, T., Kuge, S., et al., 2014. FBXO6 attenuates cadmium toxicity in HEK293 cells by inhibiting ER stress and JNK activation. J. Toxicol. Sci., 39(6):861–866. http://dx.doi.org/10.2131/jts.39.861

    Article  CAS  PubMed  Google Scholar 

  • DuRose, J.B., Scheuner, D., Kaufman, R.J., et al., 2009. Phosphorylation of eukaryotic translation initiation factor 2α coordinates rRNA transcription and translation inhibition during endoplasmic reticulum stress. Mol. Cell. Biol., 29(15):4295–4307. http://dx.doi.org/10.1128/MCB.00260-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eberle, A.B., Lykke-Andersen, S., Mühlemann, O., et al., 2009. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat. Struct. Mol. Biol., 16(1):49–55. http://dx.doi.org/10.1038/nsmb.1530

    Article  CAS  PubMed  Google Scholar 

  • Eletto, D., Eletto, D., Dersh, D., et al., 2014. Protein disulfide isomerase A6 controls the decay of IRE1α signaling via disulfide-dependent association. Mol. Cell, 53(4):562–576. http://dx.doi.org/10.1016/j.molcel.2014.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabrizio, G., Di Paola, S., Stilla, A., et al., 2014. ARTC1-mediated ADP-ribosylation of GRP78/BiP: a new player in endoplasmic-reticulum stress responses. Cell. Mol. Life Sci., 72(6):1209–1225. http://dx.doi.org/10.1007/s00018-014-1745-6

    Article  PubMed  Google Scholar 

  • Farhan, H., Weiss, M., Tani, K., et al., 2008. Adaptation of endoplasmic reticulum exit sites to acute and chronic increases in cargo load. EMBO J., 27(15):2043–2054. http://dx.doi.org/10.1038/emboj.2008.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo, F.J., Jiang, R., Li, X., et al., 2014a. Regulation of chondrocyte differentiation by IRE1α depends on its enzymatic activity. Cell. Signal., 26(9):1998–2007. http://dx.doi.org/10.1016/j.cellsig.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  • Guo, F.J., Xiong, Z., Lu, X., et al., 2014b. ATF6 upregulates XBP1s and inhibits ER stress-mediated apoptosis in osteoarthritis cartilage. Cell. Signal., 26(2):332–342. http://dx.doi.org/10.1016/j.cellsig.2013.11.018

    Article  CAS  PubMed  Google Scholar 

  • Häcker, G., 2014. ER-stress and apoptosis: molecular mechanisms and potential relevance in infection. Microbes Infect., 16(10):805–810. http://dx.doi.org/10.1016/j.micinf.2014.08.009

    Article  PubMed  Google Scholar 

  • Harding, H.P., Zhang, Y., Scheuner, D., et al., 2009. Ppp1r15 gene knockout reveals an essential role for translation initiation factor 2 alpha (eIF2α) dephosphorylation in mammalian development. PNAS, 106(6):1832–1837. http://dx.doi.org/10.1073/pnas.0809632106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassler, J., Cao, S.S., Kaufman, R.J., 2012. IRE1, a doubleedged sword in pre-miRNA slicing and cell death. Dev. Cell, 23(5):921–923. http://dx.doi.org/10.1016/j.devcel.2012.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiramatsu, N., Messah, C., Han, J., et al., 2014. Translational and posttranslational regulation of XIAP by eIF2α and ATF4 promotes ER stress-induced cell death during the unfolded protein response. Mol. Biol. Cell, 25(9):1411–1420. http://dx.doi.org/10.1091/mbc.E13-11-0664

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch, I., Weiwad, M., Prell, E., et al., 2014. ERp29 deficiency affects sensitivity to apoptosis via impairment of the ATF6-CHOP pathway of stress response. Apoptosis, 19(5):801–815. http://dx.doi.org/10.1007/s10495-013-0961-0

    Article  CAS  PubMed  Google Scholar 

  • Hu, P., Han, Z., Couvillon, A.D., et al., 2006. Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1α-mediated NF-κB activation and down-regulation of TRAF2 expression. Mol. Cell. Biol., 26(8):3071–3084. http://dx.doi.org/10.1128/MCB.26.8.3071-3084.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C.C., Li, Y., Lopez, A.B., et al., 2010. Temporal regulation of Cat-1 (cationic amino acid transporter-1) gene transcription during endoplasmic reticulum stress. Biochem. J., 429(1):215–224. http://dx.doi.org/10.1042/BJ20100286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang, J., Sato, H., Tang, Y., et al., 2010. UPF1 association with the CAP-binding protein, CBP80, promotes nonsense-mediated mRNA decay at two distinct steps. Mol. Cell, 39(3):396–409. http://dx.doi.org/10.1016/j.molcel.2010.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karali, E., Bellou, S., Stellas, D., et al., 2014. VEGF signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol. Cell, 54(4):559–572. http://dx.doi.org/10.1016/j.molcel.2014.03.022

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, R.J., 2004. Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem. Sci., 29(3):152–158. http://dx.doi.org/10.1016/j.tibs.2004.01.004

    Article  CAS  PubMed  Google Scholar 

  • Kaufman, R.J., Cao, S., 2010. Inositol-requiring 1/X-box-binding protein 1 is a regulatory hub that links endoplasmic reticulum homeostasis with innate immunity and metabolism. EMBO Mol. Med., 2(6):189–192. http://dx.doi.org/10.1002/emmm.201000076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Choi, T.G., Ding, Y., et al., 2008. Overexpressed cyclophilin B suppresses apoptosis associated with ROS and Ca2+ homeostasis after ER stress. J. Cell Sci., 121(21):3636–3648. http://dx.doi.org/10.1242/jcs.028654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouroku, Y., Fujita, E., Tanida, I., et al., 2007. ER stress (PERK/eIF2α phosphorylation) mediates the polyglutamineinduced LC3 conversion, an essential step for autophagy formation. Cell Death Differ., 14(2):230–239. http://dx.doi.org/10.1038/sj.cdd.4401984

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Liu, Y., Xia, F., et al., 2014a. Progranulin is required for proper ER stress response and inhibits ER stressmediated apoptosis through TNFR2. Cell. Signal., 26(7):1539–1548. http://dx.doi.org/10.1016/j.cellsig.2014.03.026

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Guo, Y., Tang, J., et al., 2014b. New insights into the roles of CHOP-induced apoptosis in ER stress. Acta Biochim. Biophys. Sin. (Shanghai), 46(8):629–640. http://dx.doi.org/10.1093/abbs/gmu048

    Article  CAS  Google Scholar 

  • Lu, M., Lawrence, D.A., Marsters, S., et al., 2014. Cell death. Opposing unfolded-protein-response signals converge on death receptor 5 to control apoptosis. Science, 345(6192):98–101. http://dx.doi.org/10.1126/science.1254312

    CAS  PubMed  Google Scholar 

  • Majumder, M., Huang, C., Snider, M.D., et al., 2012. A novel feedback loop regulates the response to endoplasmic reticulum stress via the cooperation of cytoplasmic splicing and mRNA translation. Mol. Cell. Biol., 32(5):992–1003. http://dx.doi.org/10.1128/MCB.06665-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mak, B.C., Wang, Q., Laschinger, C., et al., 2008. Novel function of PERK as a mediator of force-induced apoptosis. J. Biol. Chem., 283(34):23462–23472. http://dx.doi.org/10.1074/jbc.M803194200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malhotra, J.D., Kaufman, R.J., 2007. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a doubleedged sword? Antioxid Redox Signal., 9(12):2277–2293. http://dx.doi.org/10.1089/ars.2007.1782

    Article  CAS  PubMed  Google Scholar 

  • Malhotra, J.D., Kaufman, R.J., 2011. ER stress and its functional link to mitochondria: role in cell survival and death. Cold Spring Harb. Perspect. Biol., 3(9):a004424. http://dx.doi.org/10.1101/cshperspect.a004424

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao, T., Shao, M., Qiu, Y., et al., 2011. PKA phosphorylation couples hepatic inositol-requiring enzyme 1α to glucagon signaling in glucose metabolism. PNAS, 108(38):15852–15857. http://dx.doi.org/10.1073/pnas.1107394108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel, M., Chevet, E., Tavernier, J., et al., 2014. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem. Sci., 39(5):245–254. http://dx.doi.org/10.1016/j.tibs.2014.02.008

    Article  CAS  PubMed  Google Scholar 

  • Meares, G.P., Liu, Y., Rajbhandari, R., et al., 2014. PERKdependent activation of JAK1 and STAT3 contributes to endoplasmic reticulum stress-induced inflammation. Mol. Cell. Biol., 34(20):3911–3925. http://dx.doi.org/10.1128/MCB.00980-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Muaddi, H., Majumder, M., Peidis, P., et al., 2010. Phosphorylation of eIF2α at serine 51 is an important determinant of cell survival and adaptation to glucose deficiency. Mol. Biol. Cell, 21(18):3220–3231. http://dx.doi.org/10.1091/mbc.E10-01-0023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mühlemann, O., Lykke-Andersen, J., 2010. How and where are nonsense mRNAs degraded in mammalian cells? RNA Biol., 7(1):28–32. http://dx.doi.org/10.4161/rna.7.1.10578

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagasawa, K., Higashi, T., Hosokawa, N., et al., 2007. Simultaneous induction of the four subunits of the TRAP complex by ER stress accelerates ER degradation. EMBO Rep., 8(5):483–489. http://dx.doi.org/10.1038/sj.embor.7400933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagelkerke, A., Bussink, J., Sweep, F.C., et al., 2014. The unfolded protein response as a target for cancer therapy. Biochim. Biophys. Acta, 1846(2):277–284. http://dx.doi.org/10.1016/j.bbcan.2014.07.006

    CAS  PubMed  Google Scholar 

  • Niwa, M., Sidrauski, C., Kaufman, R.J., et al., 1999. A role for presenilin-1 in nuclear accumulation of IRE1 fragments and induction of the mammalian unfolded protein response. Cell, 99(7):691–702. http://dx.doi.org/10.1016/S0092-8674(00)81667-0

    Article  CAS  PubMed  Google Scholar 

  • Oslowski, C.M., Hara, T., O'sullivan-Murphy, B., et al., 2012. Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab., 16(2):265–273. http://dx.doi.org/10.1016/j.cmet.2012.07.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poothong, J., Sopha, P., Kaufman, R.J., et al., 2010. Domain compatibility in IRE1 kinase is critical for the unfolded protein response. FEBS Lett., 584(14):3203–3208. http://dx.doi.org/10.1016/j.febslet.2010.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu, Y., Mao, T., Zhang, Y., et al., 2010. A crucial role for RACK1 in the regulation of glucose-stimulated IRE1α activation in pancreatic β cells. Sci. Signal., 3(106):ra7. http://dx.doi.org/10.1126/scisignal.2000514

    Article  PubMed  PubMed Central  Google Scholar 

  • Renna, M., Caporaso, M.G., Bonatti, S., et al., 2007. Regulation of ERGIC-53 gene transcription in response to endoplasmic reticulum stress. J. Biol. Chem., 282(31):22499–22512. http://dx.doi.org/10.1074/jbc.M703778200

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski, D.T., Kaufman, R.J., 2007. That which does not kill me makes me stronger: adapting to chronic ER stress. Trends Biochem. Sci., 32(10):469–476. http://dx.doi.org/10.1016/j.tibs.2007.09.003

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski, D.T., Arnold, S.M., Miller, C.N., et al., 2006. Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol., 4(11):e374. http://dx.doi.org/10.1371/journal.pbio.0040374

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakaki, K., Yoshina, S., Shen, X., et al., 2012. RNA surveillance is required for endoplasmic reticulum homeostasis. PNAS, 109(21):8079–8084. http://dx.doi.org/10.1073/pnas.1110589109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen, X., Zhang, K., Kaufman, R.J., 2004. The unfolded protein response—a stress signaling pathway of the endoplasmic reticulum. J. Chem. Neuroanat., 28(1–2):79–92. http://dx.doi.org/10.1016/j.jchemneu.2004.02.006

    Article  CAS  PubMed  Google Scholar 

  • Shen, Y., Meunier, L., Hendershot, L.M., 2002. Identification and characterization of a novel endoplasmic reticulum (ER) Dnaj homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J. Biol. Chem., 277(18):15947–15956. http://dx.doi.org/10.1074/jbc.M112214200

    Article  CAS  PubMed  Google Scholar 

  • Son, S.M., Byun, J., Roh, S.E., et al., 2014. Reduced IRE1α mediates apoptotic cell death by disrupting calcium homeostasis via the INSP3 receptor. Cell. Death Dis., 5(4):e1188. http://dx.doi.org/10.1038/cddis.2014.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonenberg, N., Hinnebusch, A.G., 2009. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 136(4):731–745. http://dx.doi.org/10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukumo, Y., Tsukahara, S., Furuno, A., et al., 2014. TBL2 is a novel PERK-binding protein that modulates stresssignaling and cell survival during endoplasmic reticulum stress. PLoS ONE, 9(11):e112761. http://dx.doi.org/10.1371/journal.pone.0112761

    Article  PubMed  PubMed Central  Google Scholar 

  • Urra, H., Hetz, C., 2014. A novel ER stress-independent function of the UPR in angiogenesis. Mol. Cell, 54(4):542–544. http://dx.doi.org/10.1016/j.molcel.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  • Wang, M., Kaufman, R.J., 2014. The impact of the endoplasmic reticulum protein-folding environment on cancer development. Nat. Rev. Cancer, 14(9):581–597. http://dx.doi.org/10.1038/nrc3800

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Kaufman, R.J., 2012. The impact of the unfolded protein response on human disease. J. Cell Biol., 197(7):857–867. http://dx.doi.org/10.1083/jcb.201110131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Chen, Z., Lam, V., et al., 2012. IRE1α-XBP1s induces PDI expression to increase MTP activity for hepatic VLDL assembly and lipid homeostasis. Cell Metab., 16(4):473–486. http://dx.doi.org/10.1016/j.cmet.2012.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W.A., Groenendyk, J., Michalak, M., 2014. Endoplasmic reticulum stress associated responses in cancer. BBA-Mol. Cell Res., 1843(10):2143–2149. http://dx.doi.org/10.1016/j.bbamcr.2014.01.012

    CAS  Google Scholar 

  • Welihinda, A.A., Tirasophon, W., Green, S.R., et al., 1997. Gene induction in response to unfolded protein in the endoplasmic reticulum is mediated through Ire1p kinase interaction with a transcriptional coactivator complex containing Ada5p. PNAS, 94(9):4289–4294. http://dx.doi.org/10.1073/pnas.94.9.4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Win, S., Than, T.A., Fernandez-Checa, J.C., et al., 2014. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis., 5(1):e989. http://dx.doi.org/10.1038/cddis.2013.522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J., Ruas, J.L., Estall, J.L., et al., 2011. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab., 13(2):160–169. http://dx.doi.org/10.1016/j.cmet.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yadav, R.K., Chae, S.W., Kim, H.R., et al., 2014. Endoplasmic reticulum stress and cancer. J. Cancer Prev., 19(2):75–88. http://dx.doi.org/10.15430/JCP.2014.19.2.75

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamamoto, K., Yoshida, H., Kokame, K., et al., 2004. Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J. Biochem., 136(3):343–350. http://dx.doi.org/10.1093/jb/mvh122

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K., Shen, X., Wu, J., et al., 2006. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell, 124(3):587–599. http://dx.doi.org/10.1016/j.cell.2005.11.040

    Article  CAS  PubMed  Google Scholar 

  • Zhang, P., Sun, Q., Zhao, C., et al., 2014. HDAC4 protects cells from ER stress induced apoptosis through interaction with ATF4. Cell. Signal., 26(3):556–563. http://dx.doi.org/10.1016/j.cellsig.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  • Zhu, J.J., Chai, X.L., Zhang, Y.S., 2014. Endoplasmic reticulum stress and vascular endothelial injury in type 2 diabetes mellitus. Progress Physiol. Sci., 45(1):72–74 (in Chinese).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-dong Fan.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2012CB518900), the National Natural Science Foundation of China (Nos. 31160240 and 31260621), the National Major Scientific and Technological Special Project during the Twelfth Five-year Plan Period of China (No. 2012ZX10002006), the Hangzhou Normal University Supporting Project (No. PE13002004042), and the Natural Science Foundation of Jiangxi Province (No. 20114BAB204016), China

ORCID: Han-dong FAN, http://orcid.org/0000-0001-7040-7744

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Wang, Xz., Wang, T. et al. Molecular signal networks and regulating mechanisms of the unfolded protein response. J. Zhejiang Univ. Sci. B 18, 1–14 (2017). https://doi.org/10.1631/jzus.B1600043

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600043

Key words

关键词

CLC number

Navigation