Skip to main content
Log in

Syntheses and characterizations of alloyed Co x Ni1−x O nanocrystals

Co x Ni1−x O 合金纳米晶的合成与表征

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Alloying is an effective way to manipulate the composition and physico-chemical properties of functional materials. We demonstrated the syntheses of alloyed Co x Ni1−x O nanocrystals using a nonaqueous approach, with x continuously tuned from 0 to 1 by varying the molar ratios of the cobalt precursor in the reagents. The morphological, structural, and compositional properties of the alloyed Co x Ni1−x O nanocrystals were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), inductively coupled plasma atomic emission spectroscopy (ICP-AES), and energy dispersive X-ray spectroscopy (EDS). The results showed that the cobalt and nickel atoms were homogeneously distributed in the alloyed nanocrystals. The as-prepared Co x Ni1−x O nanocrystals can be applied as the hole-transporting layers in polymer light emitting diodes (PLEDs). Our study provides a good example for the syntheses of alloyed oxide nanocrystals with continuously tunable composition.

中文概要

目 的

合成成分连续可调的Co x Ni1−x O 合金纳米晶, 揭 示Co x Ni1−x O 合金纳米晶的形貌和晶体结构随纳 米晶中钴离子含量的变化规律以及考察金属离 子在合金纳米晶的分布情况。

创新点

1. 利用金属羧酸盐在有机体系中的醇解反应制备 Co x Ni1−x O 合金纳米晶, 其反应温度仅为270 °C, 显著低于文献报道中所使用的温度; 2. 成功实现 Co x Ni1−x O 纳米晶成分的调节, 发现纳米晶形貌随 成分的变化规律; 3. 揭示了金属离子在合金纳米 晶中的均匀分布。

方 法

1. 在硬脂酸锂的“配体保护”作用下, 利用金属 羧酸盐的醇解反应制备Co x Ni1−x O 合金纳米晶; 2. 利用透射电子显微镜、X 射线衍射、原子发射 光谱和X 射线光电子等手段研究Co x Ni1−x O 合金 纳米晶的形貌、晶体结构、成分和金属离子价态 等信息。

结 论

1. 成功地制备出高质量的Co x Ni1−x O (x∈[0, 1])合 金纳米晶; 2. 发现Co x Ni1−x O 合金纳米晶的形貌 和晶体结构随纳米晶中钴离子浓度的提高呈现 出由NiO 特征过渡到CoO 特征的趋势; 3. 对单 颗Co x Ni1−x O 合金纳米晶的元素扫描揭示了金属 离子在纳米晶中的均匀分布。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Choi, S.H., Kang, Y.C., 2014. Ultrafast synthesis of yolk-shell and cubic NiO nanopowders and application in lithium ion batteries. ACS Applied Materials & Interfaces, 6(4): 2312–2316. http://dx.doi.org/10.1021/am404232x

    Article  Google Scholar 

  • Dai, X.L., Zhang, Z.X., Jin, Y.Z., et al., 2014. Solutionprocessed, high-performance light-emitting diodes based on quantum dots. Nature, 515(7525): 96–99. http://dx.doi.org/10.1038/nature13829

    Article  Google Scholar 

  • Hagelin-Weaver, H.A.E., Hoflund, G.B., Minahan, D.M., et al., 2004. Electron energy loss spectroscopic investigation of Co metal, CoO, and Co3O4 before and after Ar+ bombardment. Applied Surface Science, 235(4): 420–448. http://dx.doi.org/10.1016/j.apsusc.2004.02.062

    Article  Google Scholar 

  • Hüfner, H., 1994. Electronic-structure of NiO and related 3D-transition-metal compounds. Advances in Physics, 43(2): 183–356. http://dx.doi.org/10.1080/00018739400101495

    Article  Google Scholar 

  • Jiang, F., Choy, W.C.H., Li, X.C., et al., 2015. Posttreatment-free solution-processed non-stoichiometric NiO x nanoparticles for efficient hole-transport layers of organic optoelectronic devices. Advanced Materials, 27(18): 2930–2937. http://dx.doi.org/10.1002/adma.201405391

    Article  Google Scholar 

  • Jin, Y.Z., Yi, Q., Zhou, L.M., et al., 2012. Synthesis and characterization of ultrathin tin-doped zinc oxide nanowires. European Journal of Inorganic Chemistry, 2012(27): 4268–4272. http://dx.doi.org/10.1002/ejic.201200659

    Article  Google Scholar 

  • Kiliç, Ç., Zunger, A., 2002. N-type doping of oxides by hydrogen. Applied Physics Letters, 81(1): 73–75. http://dx.doi.org/10.1063/1.1482783

    Article  Google Scholar 

  • Kuboon, S., Hu, Y.H., 2011. Study of NiO-CoO and Co3O4-Ni3O4 solid solutions in multiphase Ni-Co-O systems. Industrial & Engineering Chemistry Research, 50(4): 2015–2020. http://dx.doi.org/10.1021/ie101249r

    Article  Google Scholar 

  • Lang, J.W., Kong, L.B., Wu, W.J., et al., 2008. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chemical Communications, (35): 4213–4215. http://dx.doi.org/10.1039/b800264a

  • Liang, X.Y., Yi, Q., Bai, S., et al., 2014. Synthesis of unstable colloidal inorganic nanocrystals through the introduction of a protecting ligand. Nano Letters, 14(6): 3117–3123. http://dx.doi.org/10.1021/nl501763z

    Article  Google Scholar 

  • Peck, M.A., Langell, M.A., 2012. Comparison of nanoscaled and bulk NiO structural and environmental characteristics by XRD, XAFS, and XPS. Chemistry of Materials, 24(23): 4483–4490. http://dx.doi.org/10.1021/cm300739y

    Article  Google Scholar 

  • Qiu, H.L., Chen, G.Y., Fan, R.W., et al., 2011. Tuning the size and shape of colloidal cerium oxide nanocrystals through lanthanide doping. Chemical Communications, 47(34): 9648–9650. http://dx.doi.org/10.1039/c1cc13707g

    Article  Google Scholar 

  • Ratcliff, E.L., Meyer, J., Steirer, K.X., et al., 2011. Evidence for near-surface NiOOH species in solution-processed NiOx selective interlayer materials: impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chemistry of Materials, 23(22): 4988–5000. http://dx.doi.org/10.1021/cm202296p

    Article  Google Scholar 

  • Regulacio, M.D., Han, M.Y., 2010. Composition-tunable alloyed semiconductor nanocrystals. Accounts of Chemical Research, 43(5): 621–630. http://dx.doi.org/10.1021/ar900242r

    Article  Google Scholar 

  • Stiglich, J.J., Cohen, J.B., Whitmore, D.H., 1973a. Interdiffusion in CoO-NiO solid-solutions. Journal of the American Ceramic Society, 56(3): 119–126. http://dx.doi.org/10.1111/j.1151-2916.1973.tb15425.x

    Article  Google Scholar 

  • Stiglich, J.J., Whitmore, D.H., Cohen, J.B., 1973b. Defect structure of NiO-CoO solid solutions. Journal of the American Ceramic Society, 56(4): 211–213. http://dx.doi.org/10.1111/j.1151-2916.1973.tb12459.x

    Article  Google Scholar 

  • Takizawa, K., Hagiwara, A., 2001. Behavior of CoO-NiO solid solution in molten carbonate. Journal of the Electrochemical Society, 148(9):A1034–A1040. http://dx.doi.org/10.1149/1.1390345

    Article  Google Scholar 

  • Varghese, B., Reddy, M.V., Yanwu, Z., et al., 2008. Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chemistry of Materials, 20(10): 3360–3367. http://dx.doi.org/10.1021/cm703512k

    Article  Google Scholar 

  • Wang, X., Jin, Y.Z., He, H.P., et al., 2013. Bandgap engineering and shape control of colloidal CdxZn1-xO nanocrystals. Nanoscale, 5(14): 6464–6468. http://dx.doi.org/10.1039/c3nr01124k

    Article  Google Scholar 

  • Wang, Y.F., Zhang, L.J., 2012. Simple synthesis of CoONiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance. Journal of Power Sources, 209: 20–29. http://dx.doi.org/10.1016/j.jpowsour.2012.02.074

    Article  Google Scholar 

  • Wang, Z.Q., Zhang, M., Zhou, J., 2016. Flexible NiOgraphene-carbon fiber mats containing multifunctional graphene for high stability and high specific capacity lithium-ion storage. ACS Applied Materials & Interfaces, 8(18): 11507–11515. http://dx.doi.org/10.1021/acsami.6b01958

    Article  Google Scholar 

  • White, M.A., Ochsenbein, S.T., Gamelin, D.R., 2008. Colloidal nanocrystals of wurtzite Zn1-xCoxO (0=x=1): models of spinodal decomposition in an oxide diluted magnetic semiconductor. Chemistry of Materials, 20(22): 7107–7116. http://dx.doi.org/10.1021/cm802280g

    Article  Google Scholar 

  • Xiao, S.H., Qu, F.Y., Wu, X., 2016. Ultrathin NiO nanoflakes electrode materials for supercapacitors. Applied Surface Science, 360: 8–13. http://dx.doi.org/10.1016/j.apsusc.2015.10.171

    Article  Google Scholar 

  • Yang, H., Guai, G.H., Guo, C., et al., 2011. NiO/Graphene composite for enhanced charge separation and collection in p-type dye sensitized solar cell. The Journal of Physical Chemistry C, 115(24): 12209–12215. http://dx.doi.org/10.1021/jp201178a

    Article  Google Scholar 

  • Yang, H.M., Ouyang, J., Tang, A.D., 2007. Single step synthesis of high-purity CoO nanocrystals. The Journal of Physical Chemistry B, 111(28): 8006–8013. http://dx.doi.org/10.1021/jp070711k

    Article  Google Scholar 

  • Yang, Y.F., Jin, Y.Z., He, H.P., et al., 2010. Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. Journal of the American Chemical Society, 132(38): 13381–13394. http://dx.doi.org/10.1021/ja103956p

    Article  Google Scholar 

  • Yuan, C.Z., Zhang, X.G., Su, L.H., et al., 2009. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors. Journal of Materials Chemistry, 19(32): 5772–5777. http://dx.doi.org/10.1039/b902221j

    Article  Google Scholar 

  • Zhang, H., Cheng, J.Q., Lin, F., et al., 2016. Pinhole-free and surface-nanostructured NiOx film by room-temperature solution process for high-performance flexible perovskite solar cells with good stability and reproducibility. ACS Nano, 10(1): 1503–1511. http://dx.doi.org/10.1021/acsnano.5b07043

    Article  Google Scholar 

  • Zhang, J., Wang, J.T., Fu, Y.Y., et al., 2014. Efficient and stable polymer solar cells with annealing-free solutionprocessible NiO nanoparticles as anode buffer layers. Journal of Materials Chemistry C, 2(39): 8295–8302. http://dx.doi.org/10.1039/C4TC01302F

    Article  Google Scholar 

  • Zhang, L.P., Mu, J.C., Wang, Z., et al., 2016. One-pot synthesis of NiO/C composite nanoparticles as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 671: 60–65. http://dx.doi.org/10.1016/j.jallcom.2016.02.038

    Article  Google Scholar 

  • Zhou, G., Wang, D.W., Yin, L.C., et al., 2012. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano, 6(4): 3214–3223. http://dx.doi.org/10.1021/nn300098m

    Article  Google Scholar 

  • Zhu, Y.F., Liang, X.Y., Jiang, Q., 2008. The effect of alloying on the bandgap energy of nanoscaled semiconductor alloys. Advanced Functional Materials, 18(9): 1422–1429. http://dx.doi.org/10.1002/adfm.200700857

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi-zhen Ye or Yi-zheng Jin.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 91433204 and 51522209) and the Fundamental Research Funds for the Central Universities (No. 2015XZZX004-24), China

ORCID: Xin WANG, http://orcid.org/0000-0003-2171-8583

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Ye, Zz. & Jin, Yz. Syntheses and characterizations of alloyed Co x Ni1−x O nanocrystals. J. Zhejiang Univ. Sci. A 18, 306–312 (2017). https://doi.org/10.1631/jzus.A1600399

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1600399

Keywords

关键词

CLC number

Navigation