Skip to main content
Log in

Correlated channel model-based secure communications in dual-hop wireless communication networks

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

This article is focused on secure relay beamformer design with a correlated channel model in the relay-eavesdropper network. In this network, a single-antenna source-destination pair transmits secure information with the help of an amplify-and-forward (AF) relay equipped with multiple antennas, and the legitimate and eavesdropping channels are correlated. The relay cannot obtain the instantaneous channel state information (CSI) of the eavesdropper, and has only the knowledge of correlation information between the legitimate and eavesdropping channels. Depending on this information, we derive the conditional distribution of the eavesdropping channel. Two beamformers at the relay are studied for the approximate ergodic secrecy rate: (1) the generalized match-and-forward (GMF) beamformer to maximize the legitimate channel rate, and (2) the general-rank beamformer (GRBF). In addition, one lower-bound-maximizing (LBM) beamformer at the relay is discussed for maximizing the lower bound of the ergodic secrecy rate. We find that the GMF beamformer is the optimal rank-one beamformer, that the GRBF is the iteratively optimal beamformer, and that the performance of the LBM beamformer for the ergodic secrecy rate gets close to that of the GRBF for the approximate secrecy rate. It can also be observed that when the relay has lower power or the channel gain of the second hop is low, the performance of the GMF beamformer surpasses that of the GRBF. Numerical results are presented to illustrate the beamformers’ performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barkat, M., 2005. Signal Detection and Estimation. Artech House.

    Google Scholar 

  • Chen, L., 2011. Physical layer security for cooperative relaying in broadcast networks. Military Communications Conf., p.91–96. http://dx.doi.org/10.1109/MILCOM.2011.6127796

    Google Scholar 

  • Cheng, X., Wang, C., Wang, H., et al., 2012. Cooperative MIMO channel modeling and multi-link spatial correlation properties. IEEE J. Sel. Areas Commun., 30(2): 388–396. http://dx.doi.org/10.1109/JSAC.2012.120218

    Article  Google Scholar 

  • Choi, J., 2016. A robust beamforming approach to guarantee instantaneous secrecy rate. IEEE Trans. Wirel. Commun., 15(2): 1076–1085. http://dx.doi.org/10.1109/TWC.2015.2482494

    Article  Google Scholar 

  • Csiszár, I., Korner, J., 1978. Broadcast channels with confidential messages. IEEE Trans. Inform. Theory, 24(3): 339–348. http://dx.doi.org/10.1109/TIT.1978.1055892

    Article  MathSciNet  Google Scholar 

  • Dong, L., Han, Z., Petropulu, A.P., et al., 2010. Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process., 58(3): 1875–1888. http://dx.doi.org/10.1109/TSP.2009.2038412

    Article  MathSciNet  Google Scholar 

  • Ferdinand, N.S., da Costa, D.B., de Almeida, A.L.F., et al., 2014. Physical layer secrecy performance of TAS wiretap channels with correlated main and eavesdropper channels. IEEE Wirel. Commun. Lett., 3(1): 86–89. http://dx.doi.org/10.1109/WCL.2013.112313.130733

    Article  Google Scholar 

  • Geraci, G., Al-Nahari, A.Y., Yuan, J., et al., 2013. Linear precoding for broadcast channels with confidential messages under transmit-side channel correlation. IEEE Commun. Lett., 17(6): 1164–1167. http://dx.doi.org/10.1109/LCOMM.2013.050313.130353

    Article  Google Scholar 

  • Ghose, S., Bose, R., 2013. Power allocation strategy using node cooperation for transmit power minimization under correlated fading. National Conf. on Communications, p.1–5. http://dx.doi.org/10.1109/NCC.2013.6487960

    Google Scholar 

  • Kim, A.Y., Cho, H.N., Lee, J.W., et al., 2009. Allocation of transmit power in spatially-correlated dual-hop MIMO relay channels. 9th Int. Symp. on Communications and Information Technology, p.332–336. http://dx.doi.org/10.1109/ISCIT.2009.5341231

    Google Scholar 

  • Kobayashi, M., Caire, G., 2007. Joint beamforming and scheduling for a multi-antenna downlink with imperfect transmitter channel knowledge. IEEE J. Sel. Areas Commun., 25(7): 1468–1477. http://dx.doi.org/10.1109/JSAC.2007.070919

    Article  Google Scholar 

  • Krikidis, I., 2010. Opportunistic relay selection for cooperative networks with secrecy constraints. IET Commun., 4(15): 1787–1791. http://dx.doi.org/10.1049/iet-com.2009.0634

    Article  Google Scholar 

  • Lee, J.H., 2015. Cooperative relaying protocol for improving physical layer security in wireless decode-and-forward relaying networks. Wirel. Pers. Commun., 83(4): 3033–3044. http://dx.doi.org/10.1007/s11277-015-2580-2

    Article  Google Scholar 

  • Leung-Yan-Cheong, S., Hellman, M.E., 1978. The Gaussian wire-tap channel. IEEE Trans. Inform. Theory, 24(4): 451–456. http://dx.doi.org/10.1109/TIT.1978.1055917

    Article  MathSciNet  Google Scholar 

  • Li, J., Petropulu, A.P., Weber, S., 2011. On cooperative relaying schemes for wireless physical layer security. IEEE Trans. Signal Process., 59(10): 4985–4997. http://dx.doi.org/10.1109/TSP.2011.2159598

    Article  MathSciNet  Google Scholar 

  • Luo, Z., Ma, W.K., So, A.M.C., et al., 2010. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag., 27(3): 20–34. http://dx.doi.org/10.1109/MSP.2010.936019

    Article  Google Scholar 

  • Magnus, J.R., Neudecker, H., 1988. Matrix Differential Calculus with Applications in Statistics and Econometrics. Wiley.

    MATH  Google Scholar 

  • McKay, M.R., Collings, I.B., 2005. General capacity bounds for spatially correlated Rician MIMO channels. IEEE Trans. Inform. Theory, 51(9): 3121–3145. http://dx.doi.org/10.1109/TIT.2005.853325

    Article  MathSciNet  Google Scholar 

  • Tulino, A.M., Lozano, A., Verdu, S., 2005. Impact of antenna correlation on the capacity of multiantenna channels. IEEE Trans. Inform. Theory, 51(7): 2491–2509. http://dx.doi.org/10.1109/TIT.2005.850094

    Article  MathSciNet  Google Scholar 

  • Wang, X., Wang, K., Zhang, X., 2013. Secure relay beamforming with imperfect channel side information. IEEE Trans. Veh. Technol., 62(5): 2140–2155. http://dx.doi.org/10.1109/TVT.2012.2230657

    Article  Google Scholar 

  • Wang, X., Su, Z., Wang, G., 2015. Relay selection for secure backscatter wireless communications. Electron. Lett., 51(12): 951–952. http://dx.doi.org/10.1049/el.2014.4401

    Article  Google Scholar 

  • Wyner, A.D., 1975. The wire-tap channel. Bell Syst. Techn. J., 54(8): 1355–1387. http://dx.doi.org/10.1002/j.1538-7305.1975.tb02040.x

    Article  MathSciNet  Google Scholar 

  • Yin, X., Cheng, X., 2016. Propagation Channel Characterization, Parameter Estimation, and Modeling for Wireless Communications. Wiley-IEEE Press.

    Google Scholar 

  • Yuan, Z., Chen, C., Bai, L., et al., 2016. Secure relay beamforming with correlated channel models in dualhop wireless communication networks. IEEE GLOBECOM, p.1–6. http://dx.doi.org/10.1109/GLOCOM.2016.7842252

    Google Scholar 

  • Zhang, M., Wen, M., Cheng, X., et al., 2016. A dual-hop virtual MIMO architecture based on hybrid differential spatial modulation. IEEE Trans. Wirel. Commun., 15(9): 6356–6370. http://dx.doi.org/10.1109/TWC.2016.2583423

    Article  Google Scholar 

  • Zhang, R., Cheng, X., Yang, L., 2016a. Cooperation via spectrum sharing for physical layer security in device-todevice communications underlaying cellular networks. IEEE Trans. Wirel. Commun., 15(8): 5651–5663. http://dx.doi.org/10.1109/GLOCOM.2015.7417724

    Article  Google Scholar 

  • Zhang, R., Cheng, X., Yang, L., 2016b. Joint power and access control for physical layer security in D2D communications underlaying cellular networks. IEEE Int. Conf. on Communications, p.1–6. http://dx.doi.org/10.1109/ICC.2016.7511531

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen-hua Yuan, Chen Chen or Liu-qing Yang.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 61471008, 61571020, and 61622101) and the National Key Research and Development Project of China (No. 2016YFE0123100)

ORCID: Zhen-hua YUAN, http://orcid.org/0000-0003-3619-4831

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Zh., Chen, C., Cheng, X. et al. Correlated channel model-based secure communications in dual-hop wireless communication networks. Frontiers Inf Technol Electronic Eng 18, 796–807 (2017). https://doi.org/10.1631/FITEE.1700023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1700023

Key words

CLC number

Navigation