Skip to main content
Log in

Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: formulation, antimalarial and toxicity assessments

基于聚乳酸羟乙酸共聚物的青蒿琥酯纳米颗粒的制备, 及其抗疟活性和毒性评价

  • Published:
Journal of Zhejiang University-SCIENCE B Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to formulate polymer-based artesunate nanoparticles for malaria treatment.

Methods

Artesunate was loaded with poly(D,L-lactic-co-glycolic acid) (PLGA) by solvent evaporation from an oil-in-water single emulsion. Nanoparticles were characterized by X-ray diffraction and differential scanning calorimetry analyses. In vivo antimalarial studies at 4 mg/kg were performed on Swiss male albino mice infected with Plasmodium berghei. Hematological and hepatic toxicity assays were performed. In vitro cytotoxicity of free and encapsulated artesunate (Art-PLGA) to cell line RAW 264.7 was determined at concentrations of 7.8–1000 μg/ml.

Results

The particle size of the formulated drug was (329.3±21.7) nm and the entrapment efficiency was (38.4±10.1)%. Art-PLGA nanoparticles showed higher parasite suppression (62.6%) compared to free artesunate (58.2%, P<0.05). Platelet counts were significantly higher in controls (305 000.00±148 492.40) than in mice treated with free artesunate (139 500.00±20 506.10) or Art-PLGA (163 500.00±3535.53) (P<0.05). There was no sign of hepatic toxicity following use of the tested drugs. The half maximal inhibitory concentration (IC50) of Art-PLGA (468.0 μg/ml) was significantly higher (P<0.05) than that of free artesunate (7.3 μg/ml) in the in vitro cytotoxicity assay.

Conclusions

A simple treatment of PLGA-entrapped artesunate nanoparticles with dual advantages of low toxicity and better antiplasmodial efficacy has been developed.

概要

目 的

为疟疾治疗制定基于聚合物的青蒿琥酯纳米粒。

创新点

以聚乳酸羟乙酸共聚物 (PLGA) 为载体, 制备青蒿琥酯纳米颗粒。 并以小鼠为模型, 评估其抗 疟疗效和安全性。

方 法

以 PLGA 为载体, 采用从单一的水包油乳剂中进行溶剂蒸发的方法制备青蒿琥酯纳米颗粒。 借助 X 射线衍射和差示扫描量热分析对纳米颗粒进行表征。 以 4 mg/kg 的剂量对感染疟原虫的雄性瑞士白化小鼠进行体内抗疟活性的研究, 测定血液和肝毒性的相关指标。 体外实验以小鼠腹腔巨噬细胞细胞系 RAW 264.7 为模型, 在 7.8∼1000 μg/ml 浓度范围内, 测定游离型和包裹型青蒿琥酯的细胞毒性。

结 论

实验结果表明, 纳米颗粒的粒径为 (329.3± 21.7) nm, 包封率为(38.4±10.1)%。 与游离青蒿琥酯 (58.2%) 相比, 基于 PLGA 的青蒿琥酯纳米颗粒 (Art-PLGA) 具有较高的抑虫率 (62.6%), P<0.05 。 就血小板计数结果而言, 对照组 (305 000.00±148 492.40) 明显地高于游离青蒿琥酯组 (139 500.00±20 506.10) 和 Art-PLGA 组 (163 500.00±3535.53), P<0.05。 因此, 药物的使用没有导致肝毒性的产生。 体外细胞毒性试验结果表明, Art-PLGA 的半数抑制浓度 (IC50, 468.0 μg/ml) 显著高于游离青蒿琥酯 (7.3 μg/ml), P<0.05。 基于 PLGA 的青蒿琥酯纳米颗粒是一种有效安全的抗疟治疗方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acharya, S., Sahoo, S.K., 2011. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Del. Rev., 63(3):170–183. http://dx.doi.org/10.1016/j.addr.2010.10.008

    Article  CAS  Google Scholar 

  • Agnihotri, J., Singh, S., Bigonia, P., 2013. Formal chemical stability analysis and solubility analysis of artesunate and hydroxychloroquinine for development of parenteral dosage form. J. Pharm. Res., 6:117-122. http://dx.doi.org/10.1016/j.jopr.2012.11.025

    CAS  Google Scholar 

  • Anitha, A., Deepagan, V.G., Rani, V.V.D., et al., 2011. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate-chitosan nanoparticles. Carbohyd. Poly., 84(3):1158–1164. http://dx.doi.org/10.1016/j.carbpol.2011.01.005

    Article  CAS  Google Scholar 

  • Bhawana, R.K., Basniwal, H.S., Buttal, V.K., et al., 2011. Curcumin nanoparticles: preparation, characterization, and antimicrobial study. J. Agric. Food Chem., 59(5): 2056–2061. http://dx.doi.org/10.1021/jf104402t

    Article  CAS  PubMed  Google Scholar 

  • Bigoniya, P., Sahu, T., Tiwari, V., 2015. Hematological and biochemical effects of sub-chronic artesunate exposure in rats. Toxicol. Rep., 2:280-288. http://dx.doi.org/10.1016/j.toxrep.2015.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chadha, R., Gupta, S., Pathak, N., 2012. Artesunate-loaded chitosan/lecithin nanoparticles: preparation, characterization, and in vivo studies. Drug Dev. Ind. Pharm., 38(12):1538–1546. http://dx.doi.org/10.3109/03639045.2012.658812

    Article  CAS  PubMed  Google Scholar 

  • Cheesbrough, M., 1998. District Laboratory Practice in Tropical Countries. Part 1. Cambridge University Press, London.

    Google Scholar 

  • Chinaeke, E.E., Chime, S.A., Onyishi, V.I., et al., 2015. Formulation development and evaluation of the anti-malaria properties of sustained release artesunate-loaded solid lipid microparticles based on phytolipids. Drug Deliv., 22(5):652–665. http://dx.doi.org/10.3109/10717544.2014.881633

    Article  CAS  PubMed  Google Scholar 

  • Chittasupho, C., Xie, S.X., Baoum, A., et al., 2009. ICAM-1 targeting of doxorubicinloaded PLGA nanoparticles to lung epithelial cells. Eur. J. Pharm. Sci., 37(2):141–150. http://dx.doi.org/10.1016/j.ejps.2009.02.008

    Article  CAS  PubMed  Google Scholar 

  • Clark, R.L., 2012. Effects of artemisinins on reticulocyte counts and and relationship to possible embryotoxicity in confirmed and unconfirmed malarial patients. Birth Def. Res. Part A: Clin. Mol. Teratol., 94(2):61–75. http://dx.doi.org/10.1002/bdra.22868

    Article  CAS  Google Scholar 

  • Cooper, D.L., Harirforoosh, S., 2014. Design and optimization of PLGA-based diclofenac loaded nanoparticles. PLoS ONE, 9(1):e87326. http://dx.doi.org/10.1371/journal.pone.0087326

    Article  PubMed  PubMed Central  Google Scholar 

  • des Rieux, A., Fievez, V., Garinot, M., et al., 2006. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J. Control Release, 116(1):1–27. http://dx.doi.org/10.1016/j.jconrel.2006.08.013

    Article  PubMed  Google Scholar 

  • Dikasso, D., Makonnen, E., Debella, A., et al., 2006. In vivo anti-malaria activity of hydroalcoholic extract from Asparaginus africanus in mice infected with Plasmodium berghei. Ethiop. J. Health Dev., 20(2):112–118. http://dx.doi.org/10.4314/ejhd.v20i2.10021

    Google Scholar 

  • Efferth, T., 2007. Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin-from bench to bedside. Planta Med., 73(4):299–309. http://dx.doi.org/10.1055/s-2007-967138

    Article  CAS  PubMed  Google Scholar 

  • Faber, J.L., Chein, K.R., Mitlnacht, S., 1981. Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am. J. Pathol., 102(2):271–281.

    Google Scholar 

  • Ibrahim, N., Ibrahim, H., Dormoi, J., et al., 2014. Albuminbound nanoparticles of practically water-soluble antimalarial lead greatly enhance its efficacy. Int. J. Pharm., 464(1–2):214–224. http://dx.doi.org/10.1016/j.ijpharm.2014.01.001

    Article  CAS  PubMed  Google Scholar 

  • Jain, R.A., 2000. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 21(23):2475–2490. http://dx.doi.org/10.1016/S0142-9612(00)00115-0

    Article  CAS  PubMed  Google Scholar 

  • Kumari, A., Yadav, S.K., Yadav, S.C., 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Coll. Surf. B: Biointer., 75(1):1–18. http://dx.doi.org/10.1016/j.colsurfb.2009.09.001

    Article  CAS  Google Scholar 

  • Lai, S.K., O’ Hanlon, D.E., Harrold, S., et al., 2007. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA, 104(5): 1482–1487. http://dx.doi.org/10.1073/pnas.0608611104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, W.M., Gravett, A.M., Dalgleish, A.G., 2011. The antimalarial agent artesunate possesses anticancer properties that can be enhanced by combination strategies. Int. J. Cancer, 128(6):1471–1480. http://dx.doi.org/10.1002/ijc.25707

    Article  CAS  PubMed  Google Scholar 

  • Mainardes, R.M., Evangelista, R.C., 2005. PLGA nanoparticles containing praziquantel effect of formulation variables on size distribution. Int. J. Pharm., 290(1–2):137–144. http://dx.doi.org/10.1016/j.ijpharm.2004.11.027

    Article  CAS  PubMed  Google Scholar 

  • McNeil, S.E., 2005. Nanotechnology for the biologist. J. Leuk. Biol., 78(3):585–592. http://dx.doi.org/10.1189/jlb.0205074

    Article  CAS  Google Scholar 

  • Meng, H., Xu, K., Xu, Y., et al., 2014. Nanocapsules based on mPEGylated artesunate prodrug and its cytotoxicity. Coll. Surf. B: Biointer., 115:164-169. http://dx.doi.org/10.1016/j.colsurfb.2013.11.039

    Article  CAS  Google Scholar 

  • Mesembe, O.E., Ivang, A.E., Udo-Attah, G., et al., 2004. A morphometric study of the teratogenic effect of artesunate on the central nervous system of the Wistar rats foetus. Nig. J. Physiol. Sci., 19(1):92–97.

    Google Scholar 

  • National Research Council, 2010. Guide for the Care and Use of Laboratory Animals. National Academies Press, Washington, DC.

    Google Scholar 

  • Nguyen, H.T., Tran, T.H., Kim, J.O., et al., 2015. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly D,L-lactide-co-glycolide (PLGA) nanoparticles. Arch. Pharm. Res., 38(5):716–724. http://dx.doi.org/10.1007/s12272-014-0424-3

    Article  CAS  PubMed  Google Scholar 

  • Nobbmann, U.L.F., 2014. Polydispersity—what does it mean for DLS and chromatography? http://www.materials-talks.com/blog/2014/10/23/polydispersity-what-does-it-meanfor-dls-and-chromatography [accessed on Oct. 24, 2016]

    Google Scholar 

  • Nordström, P., 2011. Formulation of Polymeric Nanoparticles Encapsulating and Releasing a New Hydrophobic Cancer Drug. MS Thesis, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  • Panda, A., Meena, J., Katara, R., et al., 2016. Formulation and characterization of clozapine and risperidone co-entrapped spray-dried PLGA nanoparticles. Pharm. Dev. Technol., 21(1):43–53. http://dx.doi.org/10.3109/10837450.2014.965324

    Article  CAS  PubMed  Google Scholar 

  • Pradhan, R., Poudel, B.K., Ramasamy, T., et al., 2013. Docetaxel loaded polylactic acid-co-glycolic acid nanoparticles: formulation, physicochemical characterization and cytotoxicity studies. J. Nanosci. Nanotechnol., 13(8): 5948–5956. http://dx.doi.org/10.1166/jnn.2013.7735

    Article  CAS  PubMed  Google Scholar 

  • Tona, L., Mesia, K., Ngimbi, N.P., et al., 2001. In vivo antimalarial activity of Cassia occindentalis, Morinda morindoides and Phyllanthus niruri. Ann. Trop. Med. Parasitol., 95(1):47–57. http://dx.doi.org/10.1080/00034983.2001.11813614

    Article  CAS  PubMed  Google Scholar 

  • White, T.E., Bushdid, P.B., Ritter, S., et al., 2006. Artesunate-induced depletion of embryonic erythroblasts precedes embryolethality and teratogenicity in vivo. Birth Def. Res. Part B: Dev. Reprod. Toxicol., 77(5):413–429. http://dx.doi.org/10.1002/bdrb.20092

    Article  CAS  Google Scholar 

  • Woerdenbag, H.J., Moskal, T.A., Pras, N., et al., 1993. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J. Nat. Prod., 56(6):849–856. http://dx.doi.org/10.1021/np50096a007

    Article  CAS  PubMed  Google Scholar 

  • Wohlfart, S., Khalansky, A.S., Gelperina, S., et al., 2011. Efficient chemotherapy of rat glioblastoma using doxorubicinloaded PLGA nanoparticles with different stabilizers. PLoS ONE, 6: e19121. http://dx.doi.org/10.1371/journal.pone.0019121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Z.P., Feng, S.S., 2006. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials, 27(21):4025–4033. http://dx.doi.org/10.1016/j.biomaterials.2006.03.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Oyetunde OYEYEMI acknowledges the Centre for Science and Technology of the Non-Aligned and Other Developing Countries (NAM S&T Centre) in collaboration with the Department of Science & Technology (DST), the Government of India for “Research Training Fellowship for Developing Country Scientists (RTF-DCS)” award, undertaken at the National Institute of Immunology, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oyetunde Oyeyemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dauda, K., Busari, Z., Morenikeji, O. et al. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: formulation, antimalarial and toxicity assessments. J. Zhejiang Univ. Sci. B 18, 977–985 (2017). https://doi.org/10.1631/jzus.B1600389

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.B1600389

Key words

CLC number

关键词

Navigation