Skip to main content
Log in

Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-d,l-lactide-co-glycolide (PLGA) nanoparticles

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Artesunate (ART)—a well-known anti-malarial agent is also known to have potential anti-proliferative activities but its instability, poor aqueous solubility, and lack of relevant studies have limited its application as an effective anti-cancer drug. To overcome these problems, ART was loaded in poly (lactic-co-glycolic) acid (PLGA) nanoparticles using oil/water emulsion evaporation method. PLGA nanoparticles with small particle size and high entrapment efficiency were obtained. The PLGA nanoparticles were optimized by evaluating the effects of several formulation parameters on physicochemical properties of nanoparticles. The in vitro cytotoxicity of blank PLGA, free ART, and ART-PLGA on 3 human cancer cell lines viz. A549, SCC-7, and MCF-7 was conducted using MTT assay. The particles showed nanometric size (~170 nm), large entrapment efficiency (up to 83.4 %), and excellent stability (evaluated for 1 month) after lyophilization with 5 % mannitol. ART was dispersed inside particle core allowing a sustained release up to 48 h. The in vitro cytotoxicity results demonstrated strong activity of ART against cancer cell lines. The ART-PLGA formulation significantly reduced cell viability than the free ART. The formulation of ART loaded PLGA nanoparticles supported a potential application of ART as an anticancer agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acharya, S., and S.K. Sahoo. 2011. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Advanced Drug Delivery Reviews 63: 170–183.

    Article  CAS  PubMed  Google Scholar 

  • Chadha, R., S. Gupta, and N. Pathak. 2012. Artesunate-loaded chitosan/lecithin nanoparticles: Preparation, characterization, and in vivo studies. Drug Development and Industrial Pharmacy 38: 1538–1546.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., X. Lin, H. Park, and R. Greever. 2009. Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine: Nanotechnology, Biology and Medicine 5: 316–322.

    Article  CAS  Google Scholar 

  • Chittasupho, C., S.-X. Xie, A. Baoum, T. Yakovleva, T.J. Siahaan, and C.J. Berkland. 2009. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. European Journal of Pharmaceutical Sciences 37: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Danhier, F., N. Lecouturier, B. Vroman, C. Jérôme, J. Marchand-Brynaert, O. Feron, and V. Préat. 2009. Paclitaxel-loaded PEGylated PLGA-based nanoparticles: In vitro and in vivo evaluation. Journal of Controlled Release 133: 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Efferth, T. 2007. Willmar Schwabe Award 2006: Antiplasmodial and antitumor activity of artemisinin-from bench to bedside. Planta Medica 73: 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Fredenberg, S., M. Wahlgren, M. Reslow, and A. Axelsson. 2011. The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems—A review. International Journal of Pharmaceutics 415: 34–52.

    Article  CAS  PubMed  Google Scholar 

  • Gabriels, M., and J. Plaizier-Vercammen. 2003. Physical and chemical evaluation of liposomes, containing artesunate. Journal of Pharmaceutical and Biomedical Analysis 31: 655–667.

    Article  CAS  PubMed  Google Scholar 

  • Jain, R.A. 2000. The manufacturing techniques of various drug loaded biodegradable poly (poly-d, l-lactide-co-glycolide)(PLGA) devices. Biomaterials 21: 2475–2490.

    Article  CAS  PubMed  Google Scholar 

  • Jin, C., L. Bai, H. Wu, W. Song, G. Guo, and K. Dou. 2009. Cytotoxicity of paclitaxel incorporated in PLGA nanoparticles on hypoxic human tumor cells. Pharmaceutical Research 26(7): 1776–1784.

    Article  CAS  PubMed  Google Scholar 

  • Kumari, A., S.K. Yadav, and S.C. Yadav. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and Surfaces B: Biointerfaces 75: 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Kwon, H.-Y., J.-Y. Lee, S.-W. Choi, Y. Jang, and J.-H. Kim. 2001. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 182: 123–130.

    Article  CAS  Google Scholar 

  • Mainardes, R.M., and R.C. Evangelista. 2005. PLGA nanoparticles containing praziquantel: effect of formulation variables on size distribution. International Journal of Pharmaceutics 290: 137–144.

    Article  CAS  PubMed  Google Scholar 

  • Pradhan, R., B.K. Poudel, T. Ramasamy, H.-G. Choi, C.S. Yong, and J.O. Kim. 2013. Docetaxel-loaded polylactic acid-co-glycolic acid nanoparticles: Formulation, physicochemical characterization and cytotoxicity studies. Journal of Nanoscience and Nanotechnology 13: 5948–5956.

    Article  CAS  PubMed  Google Scholar 

  • Sahana, D., G. Mittal, V. Bhardwaj, and M. Kumar. 2008. PLGA nanoparticles for oral delivery of hydrophobic drugs: Influence of organic solvent on nanoparticle formation and release behavior in vitro and in vivo using estradiol as a model drug. Journal of Pharmaceutical Sciences 97: 1530–1542.

    Article  CAS  PubMed  Google Scholar 

  • Tran, T.H., T. Ramasamy, H.J. Cho, Y.I. Kim, B.K. Poudel, H.-G. Choi, C.S. Yong, and J.O. Kim. 2014a. Formulation and optimization of raloxifene-loaded solid lipid nanoparticles to enhance oral bioavailability. Journal of Nanoscience and Nanotechnology 14(7): 4820–4831.

    Article  CAS  PubMed  Google Scholar 

  • Tran, T. H., Ramasamy, T., Truong, D. H., Shin, B. S., Choi, H.-G., Yong, C. S., and Kim, J. O. 2014b. Development of vorinostat-loaded solid lipid nanoparticles to enhance pharmacokinetics and efficacy against multidrug resistant cancer cells. Pharmaceutical Research. doi:10.1007/s11095-014-1300-z.

  • Woerdenbag, H.J., T.A. Moskal, N. Pras, T.M. Malingré, F.S. El-Feraly, H.H. Kampinga, and A.W. Konings. 1993. Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. Journal of Natural Products 56: 849–856.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, X.-C., and Z.-G. Hong. 2010. Firstborn microcrystallization method to prepare nanocapsules containing artesunate. International Journal of Nanomedicine 5: 483.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xu, Q., Z.-X. Li, H.-Q. Peng, Z.-W. Sun, R.-L. Cheng, Z.-M. Ye, and W.-X. Li. 2011. Artesunate inhibits growth and induces apoptosis in human osteosarcoma HOS cell line in vitro and in vivo. Journal of Zhejiang University SCIENCE B 12: 247–255.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yallapu, M.M., B.K. Gupta, M. Jaggi, and S.C. Chauhan. 2010. Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. Journal of Colloid and Interface Science 351: 19–29.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.J., B. Gallis, M. Taya, S. Wang, R.J. Ho, and T. Sasaki. 2013. pH-responsive artemisinin derivatives and lipid nanoparticle formulations inhibit growth of breast cancer cells in vitro and induce down-regulation of HER family members. PLoS ONE 8: 14.

    CAS  Google Scholar 

  • Zhou, X., W.J. Sun, W.M. Wang, K. Chen, J.H. Zheng, M.D. Lu, P.H. Li, and Z.Q. Zheng. 2013. Artesunate inhibits the growth of gastric cancer cells through the mechanism of promoting oncosis both in vitro and in vivo. Anti-Cancer Drugs 24: 920–927.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 106-YS.05-2013.15.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chul Soon Yong or Chien Ngoc Nguyen.

Additional information

Hanh Thuy Nguyen and Tuan Hiep Tran have equal contribution in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.T., Tran, T.H., Kim, J.O. et al. Enhancing the in vitro anti-cancer efficacy of artesunate by loading into poly-d,l-lactide-co-glycolide (PLGA) nanoparticles. Arch. Pharm. Res. 38, 716–724 (2015). https://doi.org/10.1007/s12272-014-0424-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0424-3

Keywords

Navigation