Skip to main content
Log in

Probabilistic analysis of concrete cracking using stochastic finite element methods: application to nuclear containment buildings at early age

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In the case of quasi-homogeneously applied tensile loads, the intrinsic scattering of concrete properties leads to spatially random strain localization, crack initiation and propagation. The modelling of such spatial randomness, in the case of Equivalent-Homogeneous-Material Finite Elements based approaches, can be achieved thanks to the use of Random Fields. However, when aiming at probabilistic analyses, numerous realizations are required which induces a hefty computational time and restricts their applicability to the modelling of large concrete structures. In this contribution, an original probabilistic coupling strategy is provided based on non-intrusive Stochastic Finite Elements Methods. It consists of defining an explicit Surface Response of the cracking patterns expressed in terms of the most influential inputs using an Adaptive Surface Response Method combined to a Polynomial Chaos Expansion Method. Direct Monte Carlo Method is then applied—to the explicit Surface Response of the cracking patterns—to achieve Global Sensitivity Analysis, Uncertainties Quantification and probabilistic modelling at a reasonable cost. The defined strategy is validated based on a Representative Structural Volume of a 1:3 scaled experimental Containment Building at early age using a weakly coupled thermo-mechanical model. As a result, the study quantifies the effect of the most influential parameters (the Young’s modulus—the tensile strength—the coefficients of thermal expansion and autogenous shrinkages) on concrete cracking at early age and provides accurate numerical prediction of the cracking patterns (cracks’ number, opening and spacing values) observed on site and their frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. In this work, FE simulations are performed using Code_Aster (code-aster.org) and behaviour laws are implemented using the Mfront (tfel.sourceforge.net) module. Python routines are used within the Code_Aster command files to achieve probabilistic coupling.

  2. French acronym for “VErification Réaliste du COnfinement des RéacteurS” meaning “Realistic assessment of the nuclear reactors’ tightness”.

  3. One can obtain those values by performing a statistical analysis (by applying MCM to cracks’ spacing values in Fig. 3b) of the number of cracks within a 15°-sized spacing unit.

References

  1. Conceição J, Faria R, Azenha M, Mamede F, Souza F (2014) Early-age behaviour of the concrete surrounding a turbine spiral case: monitoring and thermo-mechanical modeling. Eng Struct 81:327–340. https://doi.org/10.1016/j.engstruct.2014.10.009

    Article  Google Scholar 

  2. Briffaut M, Benboudjema F, Torrenti J-M, Nahas G (2011) Numerical analysis of the thermal active restrained shrinkage ring test to study the early age behavior of massive concrete structures. Eng Struct 33(4):1390–1401. https://doi.org/10.1016/j.engstruct.2010.12.044

    Article  Google Scholar 

  3. Benboudjema F, Torrenti JM (2008) Early age behaviour of concrete in nuclear containments. Nucl Eng Des 238(10):2495–2506. https://doi.org/10.1016/j.nucendes.2008.04.009

    Article  Google Scholar 

  4. Bouhjiti DE-M, Baroth J, Briffaut M, Dufour F, Masson B (2018) Statistical modelling of cracking in large concrete structures under thermo-hydro-mechanical loads: application to nuclear containment buildings. Part 1: random field effects (Reference analysis). Nucl Eng Des 333:196–223. https://doi.org/10.1016/j.nucengdes.2018.04.005

    Article  Google Scholar 

  5. Foucault A, Michel-Ponnelle S, Galenne E (2012) A new creep model for NPP containment behaviour prediction. In: International conference on numerical modeling strategies for sustainable concrete structures

  6. Asali M, Capra B, Mazars J, Colliat JB (2016) Numerical strategy for forecasting the leakage rate of inner containments in double-wall nuclear reactor buildings. J Adv Concr Technol 14:408–420. https://doi.org/10.3151/jact.14.408

    Article  Google Scholar 

  7. Bouhjiti DE-M, Blasone M, Baroth J, Dufour F, Masson B, Michel-Ponnelle S (2018) Statistical modelling of cracking in large concrete structures under thermo-hydro-mechanical loads: application to nuclear containment buildings. Part 2: sensitivity analysis. Nucl Eng Des 334:1–23. https://doi.org/10.1016/j.nucengdes.2018.04.013

    Article  Google Scholar 

  8. Rossi P, Wu X (1992) Probabilistic model for material behaviour analysis and appraisement of concrete structures. Mag Concr Res 44(161):27–280. https://doi.org/10.1680/macr.1992.44.161.271

    Article  Google Scholar 

  9. Tailhan JL, Dal Pont S, Rossi P (2010) From local to global probabilistic modeling of concrete cracking. Ann Solid Struct Mech 1(2):103–115. https://doi.org/10.1007/s12356-010-0008-y

    Article  Google Scholar 

  10. de Larrard T, Colliat JB, Benboudjema F, Torrenti JM, Nahas G (2010) Effect of the Young’s modulus variability on the mechanical behaviour of a nuclear containment vessel. Nucl Eng Des 240(12):4051–4060. https://doi.org/10.1016/j.nucengdes.2010.09.031

    Article  Google Scholar 

  11. Baroth J, Breysse D, Schoefs F (2011) Construction reliability: safety, variability and sustainability. Wiley, New York

    Google Scholar 

  12. Sobol’ IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1–3):271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  MATH  Google Scholar 

  13. Bouhjiti D (2018) Analyse probabiliste de la fissuration et du confinement des grands ouvrages en béton armé et précontraint. Ph.D. thesis (French). Université Grenoble Alpes

  14. Cornell AC (1971) First order uncertainty analysis of soils deformation and stability. In: Proceedings of 1st conference on applications of statistics and probability to soil and structural engineering, pp 130–144

  15. Yamazaki F, Shinozuka M, Dasgupta G (1988) Neumann expansion for stochastic finite element analysis. Eng Mech 114(8):1335–1354. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:8(1335)

    Article  Google Scholar 

  16. Deodatis G (1991) Weighted integral method. I: stochastic stiffness matrix. Eng Mech 117(8):1851–1864. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:8(1851)

    Article  Google Scholar 

  17. Cavazzuti M (2012) Optimization methods: from theory to design of scientific and technological aspects in mechanics. Springer, Berlin

    MATH  Google Scholar 

  18. Montgomery D (2012) Design and analysis of experiments. Wiley, New York

    Google Scholar 

  19. Daniel C (1973) One-at-a-time plans. Am Stat Assoc 68:353–360. https://doi.org/10.2307/2284076

    Article  Google Scholar 

  20. Morris MD (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33:161–174. https://doi.org/10.2307/1269043

    Article  Google Scholar 

  21. Sobol’ IM (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1:407–417

    MathSciNet  MATH  Google Scholar 

  22. Soize C, Ghanem R (2004) Physical systems with random uncertainties: chaos representations with arbitrary probability measure. SIAM J Sci Comput 26(2):395–410. https://doi.org/10.1137/S1064827503424505

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiu D, Karniadakis G (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644. https://doi.org/10.1137/S1064827501387826

    Article  MathSciNet  MATH  Google Scholar 

  24. Gary Wang G, Dong Z, Aitchison P (2001) Adaptive response surface method—a global optimization scheme for computation-intensive design problem. J Eng Optim 33(6):707–734. https://doi.org/10.1080/03052150108940940

    Article  Google Scholar 

  25. Montgomery D (1997) Design and analysis of experiments. Wiley, New-York

    MATH  Google Scholar 

  26. VeRCoRs project description and data available at: https://fr.xing-events.com/OLD-EDF-vercors-project.html/https://www.conference-service.com/EDF-VeRCoRs-Benchmark-2018/welcome.cgi

  27. Ulm F-J, Coussy O (1998) Couplings in early-age concrete: from material modeling to structural design. Int J Solids Struct 35(31):4295–4311. https://doi.org/10.1016/S0020-7683(97)00317-X

    Article  MATH  Google Scholar 

  28. De Schutter G, Taerwe L (1996) Degree of hydration-based description of mechanical properties of early age concrete. Mater Struct 29(6):335–344. https://doi.org/10.1007/BF02486341

    Article  Google Scholar 

  29. De Schutter G (1999) Degree of hydration based kelvin model for the basic creep of early age concrete. Mater Struct 30(4):260–265. https://doi.org/10.1007/BF02479595

    Article  Google Scholar 

  30. Mazars J, Hamon F, Grange S (2015) A new 3D damage model for concrete under monotonic, cyclic and dynamic loadings. Mater Struct 48(11):3779–3793. https://doi.org/10.1617/s11527-014-0439-8

    Article  Google Scholar 

  31. Torrenti JM, Nguyen VH, Colina H, Le Maou F, Benboudjema F, Deleruyelle F (2008) Coupling between leaching and creep of concrete. Cem Concr Res 38(6):816–821. https://doi.org/10.1016/j.cemconres.2008.01.012

    Article  Google Scholar 

  32. Fichant S, La Borderie C, Pijaudier-Cabot G (1999) Isotropic anisotropic description of damage in concrete structures. Mech Cohesive Frict Mater 4(4):359–399. https://doi.org/10.1002/(SICI)1099-1484(199907)4:4%3c339:AID-CFM65%3e3.0.CO;2-J

    Article  Google Scholar 

  33. Sellier A, Millard A (2014) Weakest link and localization WL2: a method to conciliate probabilistic and energetic scale effects in numerical models. Eur J Environ Civ Eng 18(10):1177–1191. https://doi.org/10.1080/19648189.2014.906368

    Article  Google Scholar 

  34. Hillerborg A (1988) Application of fracture mechanics to concrete—summary of a series of lectures. Lund Institute of Technology, Lund

    Google Scholar 

  35. Ghanem R, Spanos P (1991) Stochastic finite elements—a spectral approach. Dover Publications, INC., New York

    Book  Google Scholar 

  36. Berveiller M, Le Pape Y, Sudret B, Perrin F (2010) Updating the long-term creep strains in concrete containment vessels by using Markov chain Monte Carlo simulation and polynomial chaos expansions. Struct Infrastruct Eng 8(5):425–440. https://doi.org/10.1080/15732479.2010.539057

    Article  Google Scholar 

  37. Bazant ZP, Le J-L (2017) Probabilistic mechanics of quasi brittle structures. Strength, lifetime, and size effect. Cambridge University Press, Cambridge. https://doi.org/10.1017/9781316585146

    Book  MATH  Google Scholar 

  38. Handika N (2017) Multi-cracking of reinforced concrete structures: image correlation analysis and modelling. Thèse INSA de Toulouse, France

  39. Bellman RE (1961) Adaptive control processes. Princeton University Press, Princeton

    Book  Google Scholar 

  40. Berveiller M, Sudret B, Lemaire M (2006) SFE: a non-intrusive approach by regression. Eur J Comput Mech 15:81–92. https://doi.org/10.3166/remn.15.81-92

    Article  MATH  Google Scholar 

  41. McKay MD, Beckman RJ, Conover WJ (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42:55–61

    Article  MathSciNet  Google Scholar 

  42. Blatman G, Sudret B, Berveiller M (2007) Quasi-random numbers in stochastic FE analysis. Méc Ind 8(3):289–297. https://doi.org/10.1051/meca:2007051

    Article  Google Scholar 

  43. Baroth J, Bodé L, Bressolette P, Fogli M (2006) Stochastic finite elements method using hermite polynomials: an approach for solving nonlinear problems with uncertain parameters. Comput Methods Appl Mech Eng 195:6479–6501. https://doi.org/10.1016/j.cma.2006.02.001

    Article  MATH  Google Scholar 

  44. Baroth J, Bressolette P, Chauviere C, Fogli M (2007) An efficient stochastic finite elements method using lagrange polynomials: application to nonlinear mechanical problems with uncertain parameters. Comput Methods Appl Mech Eng 196(45–48):4419–4429. https://doi.org/10.1016/j.cma.2007.04.017

    Article  MATH  Google Scholar 

  45. Smolyak SA (1963) Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl Akad Nauk SSSR 148(5):1042–1045

    MathSciNet  MATH  Google Scholar 

  46. Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic FE analysis. Probab Eng Mech 25(2):183–197. https://doi.org/10.1016/j.probengmech.2009.10.003

    Article  Google Scholar 

  47. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Saf 93(7):964–979. https://doi.org/10.1016/j.ress.2007.04.002

    Article  Google Scholar 

  48. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis. The primer. Wiley, New York

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by EDF-SEPTEN/DTG/CIH within the Chair PERENITI agreement with the Grenoble INP Partnership Foundation and by the joint MACENA and ENDE project fund (ProjetIA-11-RSNR-0009 and ProjetIA-11-RSNR-0012). The author is grateful to EDF-SEPTEN for the provided in situ measurements. The Chair PERENITI partners shall not in any circumstances be deemed liable for the content of this publication which is only binding its author. The 3SR lab is part of the LabEx Tec 21 (Investissements d’Avenir - Grant Agreement No. ANR-11-LABX-0030).

Funding

This work was supported by EDF-SEPTEN/DTG/CIH within the Chair PERENITI agreement with the Grenoble INP Partnership Foundation and by the joint MACENA and ENDE project fund (ProjetIA-11-RSNR-0009 and ProjetIA-11-RSNR-0012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. E.-M. Bouhjiti or J. Baroth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Brief reminder about polynomial chaos expansion methods (PCE)

Appendix: Brief reminder about polynomial chaos expansion methods (PCE)

1.1 Appendix 1: PCE

Let’s consider \( {\mathbf{\mathcal{M}}} \) a computational model whose input parameters are represented by a random vector \( {\mathbf{X}} = \left\{ {\varvec{X}_{{1 \le \varvec{i} \le \varvec{N}}} } \right\} \). The model’s random outputs \( {\mathbf{Y}} \) verify \( {\mathbf{Y}} = \left\{ {\varvec{Y}_{{1 \le \varvec{j} \le \varvec{N^{\prime}}}} } \right\} = {\mathbf{\mathcal{M}}}\left( {\mathbf{X}} \right) \). Given the physical nature of our problem, \( {\mathbf{Y}} \) is assumed to have a finite variance and can be fully defined using the following Hilbertian representation [22]:

$$ {\mathbf{Y}} = {\mathbf{\mathcal{M}}}\left( {\mathbf{X}} \right) = \mathop \sum \limits_{{{\mathbf{k}} = 0}}^{ + \infty } y_{k}\Psi _{k} \left( {\mathbf{X}} \right) $$
(14)

where \( \left\{ {\Psi _{{k \in {\mathbb{N}}}} } \right\} \) a numerable set of random variables forming the Hilbertian basis and \( \left\{ {y_{{k \in {\mathbb{N}}}} } \right\} \) are coordinates within that basis.

Several choices are possible for \( \left\{ {\Psi _{{k \in {\mathbb{N}}}} } \right\} \) verifying Eq. 14. Herein, a particular focus is granted to PCE in which the basis terms are multivariate orthonormal polynomials [23].The selection of the polynomial basis \( \left\{ {P_{{i \in {\mathbb{N}}}} } \right\} \) to be associated with each random parameter \( X_{i} \) depends on its marginal PDF \( f_{i} \left( {x_{i} } \right) \). For instance, and under the hypothesis of independent random variables \( \left\{ {X_{i} } \right\} \), standard normal distributions \( X_{i} \sim\aleph \left( {0,1} \right) \) lead to the use of Hermite polynomials \( \left\{ {{\text{He}}_{i} } \right\} \) and uniform distributions \( X_{i} \sim {U}\left( { - 1,1} \right) \) lead to the use of Legendre polynomials \( \left\{ {{\text{Le}}_{i} } \right\} \):

$$ \begin{aligned} X_{i} \sim \aleph \left( {0,1} \right) & \to \left\{ {\begin{array}{*{20}l} {\left\langle {P_{m} ,P_{n} } \right\rangle_{i} = \int\limits_{{D_{{X_{i} }} }} {P_{m} \left( x \right)P_{n} \left( x \right)f_{{X_{i} }} \left( x \right)\;{\text{d}}x = \delta_{mn} } } \hfill \\ {\left\{ {P_{{k \in {\mathbb{N}}}} } \right\} = \left\{ {\frac{{{\text{He}}_{k} }}{{\sqrt {k!} }}} \right\}} \hfill \\ {\left\{ {\begin{array}{*{20}l} {{\text{He}}_{ - 1} \left( x \right) = {\text{He}}_{0} \left( x \right) = 1} \hfill \\ {{\text{He}}_{k \ge 1} \left( x \right) = x {\text{He}}_{k - 1} \left( x \right) - \left( {k - 1} \right) {\text{He}}_{k - 2} \left( x \right)} \hfill \\ \end{array} } \right.} \hfill \\ \end{array} } \right. \\ & \to \left\{ {\begin{array}{*{20}l} {P_{0} \left( x \right) = 1} \hfill \\ {P_{1} \left( x \right) = x} \hfill \\ {P_{2} \left( x \right) = \frac{{x^{2} - 1}}{\sqrt 2 }} \hfill \\ {P_{3} \left( x \right) = \frac{{x\left( {x^{2} - 3} \right)}}{\sqrt 6 }} \hfill \\ \end{array} } \right. \\ X_{i} \sim U\left( { - 1,1} \right) & \to \left\{ {\begin{array}{*{20}l} {\left\langle {P_{m} ,P_{n} } \right\rangle_{i} = \int\limits_{{D_{{X_{i} }} }} {P_{m} \left( x \right)P_{n} \left( x \right)f_{{X_{i} }} \left( x \right)\;{\text{d}}x = \delta_{mn} } } \hfill \\ {\left\{ {P_{{k \in {\mathbb{N}}}} } \right\} = \left\{ {\frac{{{\text{Le}}_{k} }}{{\sqrt {\frac{1}{2k + 1}} }}} \right\}} \hfill \\ {{\text{Le}}_{k} = 2^{k} \mathop \sum \limits_{i = 0}^{k} x^{i} \left( {\begin{array}{*{20}c} k \\ i \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {\frac{k + i - 1}{2}} \\ k \\ \end{array} } \right)} \hfill \\ \end{array} } \right. \\ & \to \left\{ {\begin{array}{*{20}l} {P_{0} \left( x \right) = 1} \hfill \\ {P_{1} \left( x \right) = \sqrt 3 x} \hfill \\ {P_{2} \left( x \right) = \frac{\sqrt 5 }{2}\left( {3x^{2} - 1} \right)} \hfill \\ {P_{3} \left( x \right) = \frac{\sqrt 7 }{2} \times \left( {5x^{2} - 3} \right)} \hfill \\ \end{array} } \right. \\ \end{aligned} $$
(15)

where \( \delta_{mn} \) the Kronecker symbol equal to 1 when n = m and 0 otherwise, \( D_{{X_{i} }} \) the support or definition domain of \( X_{i} \).

As the random vector \( {\mathbf{X}} \) contains N random variables, a multivariate polynomial construction is needed to express \( {\mathbf{Y}} \) as shown in Eq. 14. It can be built up simply by product tensorization as following [22]:

$$ \psi_{{\alpha = \left\{ {\alpha_{1 \le i \le N} } \right\}}} \left( {\mathbf{x}} \right) = \mathop \prod \limits_{i = 1}^{N} P_{{\alpha_{i} }} \left( {x_{i} } \right) $$
(16)

where \( \left\{ {\psi_{{\alpha = \left\{ {\alpha_{{1 \le i \le {\text{N}}}} } \right\}}} ;\;\alpha_{i} \in {\mathbb{N}}} \right\} \) a countable orthonormal basis to represent the random response \( {\mathbf{Y}} \).\( \alpha = \left\{ {\alpha_{1 \le i \le N} } \right\} \) a global index referring to the order of each polynomial \( \alpha_{i} \) associated with the parameter’s realization \( x_{i} \).

Equation 14 is an infinite sum. In practice, only a finite number of terms is to be retained for the PCE (truncated expression). Such number can be defined in a way so as not to exceed a certain polynomial degree \( Q \le \mathop \sum \nolimits_{{{\mathbf{i}} = 1}}^{\varvec{N}} q_{i} \) with \( q_{i} \) the highest polynomial degree of the polynomial basis \( \left\{ {P_{{0 \le i \le q_{i} }} } \right\} \) associated with each random input \( X_{i} \):

$$ {\mathbf{Y}} \approx \widehat{{\mathbf{Y}}} = \mathop \sum \limits_{{\sum \alpha_{i} = 0}}^{\varvec{Q}} y_{\alpha }\Psi _{\alpha } \left( {\mathbf{X}} \right) $$
(17)

Consequently, the number of terms in Eq. 17 should be \( \left( {\begin{array}{*{20}c} {N + Q} \\ Q \\ \end{array} } \right) = \frac{{\left( {N + Q} \right)!}}{N!Q!} \) which increases polynomially with N and Q (curse of dimensionality [39]). As the required order \( Q \) for an accurate model approximation is not known a priori, conventional values around ~ 3–5 are considered in practice [11].

1.2 Appendix 2: PCE coefficients identification

The identification of \( y_{\alpha } \) coefficients in Eq. 17 requires several calls of the model. In the case of regression approaches [40], the number of calls should be higher than the number of unknowns for the problem to be well-posed: \( N_{\text{call}} \ge \frac{{\left( {N + Q} \right)!}}{N!Q!} \). This however, does not take advantage of the orthonormality rule of the basis \( \left\{ {\psi_{{\alpha = \left\{ {\alpha_{1 \le i \le N} } \right\}}} ;\;\alpha_{i} \in {\mathbb{N}}} \right\} \) unlike projection methods where each coordinate \( y_{\alpha } \) writes:

$$ y_{\alpha } = \int\limits_{{D_{X} }} {\Psi _{\alpha } \left( {\mathbf{x}} \right)f_{X} \left( {\mathbf{x}} \right){\mathbf{\mathcal{M}}}\left( {\mathbf{x}} \right)\;{\text{d}}{\mathbf{x}}} $$
(18)

with \( f_{X} \left( {\mathbf{x}} \right) = \mathop \prod \nolimits_{i = 1}^{N} f_{{X_{i} }} \left( {x_{i} } \right) \) the joint PDF of the random vector \( {\mathbf{X}} \). The problem then is reduced to the evaluation of the previous integration using classical integration methods, in particular the Gauss-Quadrature Method:

$$ y_{\alpha } \approx \mathop \sum \limits_{{j_{1} = 1}}^{{{\text{S}}_{1} }} \ldots \mathop \sum \limits_{{j_{N} = 1}}^{{S_{N} }} w_{{j_{1} }}^{1} \ldots w_{{j_{N} }}^{N} \Psi _{{\left\{ {\alpha_{1} , \ldots ,\alpha_{N} } \right\}}} \left( {{\mathbf{x}}_{{1,{\mathbf{j}}_{1} }} , \ldots , {\mathbf{x}}_{{{\mathbf{N}},{\mathbf{j}}_{{\mathbf{N}}} }} } \right) {\mathbf{\mathcal{M}}}\left( {{\mathbf{x}}_{{1,{\mathbf{j}}_{1} }} , \ldots , {\mathbf{x}}_{{{\mathbf{N}},{\mathbf{j}}_{{\mathbf{N}}} }} } \right) $$
(19)

with \( \left( {x_{{k,j_{k} }} ;\;w_{{j_{k} }}^{k} } \right) \) the integration points and the associated weights with respect to the distribution \( f_{{X_{k} }} \). Compared to simulation methods where a relatively high number of random integration points is chosen (MCM or QMCM [41, 42]), quadrature-based approaches [43, 44] are preferred herein to limit the computational time. In that sense, it is worth recalling that, in the case of isotropic formulae, the Gauss-Quadrature Method allows to integrate any polynomial function of a degree \( 2n - 1 \) with \( n \) suitable integration points. Consequently, for the PCE of an order \( Q \) and a polynomial basis with a maximum order \( q \), the integrand in Eq. 18 has a maximal degree of \( Qq \) requiring \( Qq + 1 \) integration points per parameter and \( \left( {Qq + 1} \right)^{N} \) calls of the model—if a full grid is retained. For high number of inputs (more than ten inputs) such curse of dimensionality can be reduced by using adapted levels within the Smolyak quadrature scheme [45] or adaptive PCE methods [46].However such level is not known a priori and is defined based on a user-defined error threshold (only known if sufficient feedbacks are available for the problem of interest).

Herein, the default Gauss-Quadrature Method is used. One can notice that there are two ways to truncate the PCE:

  • Option 1 Fixing the polynomial degrees for each parameter to a fixed value \( q \). This would lead to a global degree of \( Q = Nq \) in Eq. 17 (isotropic formulae). Using the Gauss-Quadrature Method, \( \left( {Nq^{2} + 1} \right)^{N} \) calls of the model need to be performed.

  • Option 2 Fixing the global polynomial degree to a fixed value \( Q = q \). The number of model calls is hugely reduced to \( \left( {q + 1} \right)^{N} \) as all terms \( y_{\alpha } \) of which \( \Psi _{\alpha } \) verifies \( \sum \alpha_{i} > Q \) are discarded.

Clearly, option 2 is less expensive than option 1 and is, therefore, retained herein. One is also reminded that, beyond accuracy issues, the higher \( q \) is the wider the covered domain of each random input \( X_{i} \) is (by definition a Surface Response is only valid within its estimation domain). This aspect should be considered primarily (whether the scheme is adaptive or not) when selecting the \( q \) value to avoid extrapolation errors within the physically admissible variation domains.

1.3 Appendix 3: Variance-based sensitivity analysis

The influence of each input on the computed response can be estimated using Global Sensitivity Analysis techniques. Particularly, Sobol’ indexes [12] allow the decomposition of the output’s variance into fractions that can be attributed to each input or set of inputs. Again, exploring the orthonormality rule, Sobol’ indexes might be easily derived [47] after a convenient reordering of the PCE terms:

$$ \begin{aligned} \widehat{{\mathbf{Y}}}\left( {\mathbf{x}} \right) & = \mathop \sum \limits_{{\sum \alpha_{i} = 0}}^{\varvec{Q}} y_{\alpha }\Psi _{\alpha } \left( {\mathbf{x}} \right) \\ & = \varvec{y}_{0} + \sum\limits_{{1 \le {\mathbf{i}}_{1} \le {\mathbf{N}}}} {\sum\limits_{{{\varvec{\upalpha}} \in {\varvec{\Gamma}}_{{{\mathbf{i}}_{1} }} }} {y_{\alpha }\Psi _{\alpha } \left( {{\mathbf{x}}_{{{\mathbf{i}}_{1} }} } \right) + \sum\limits_{{1 \le {\mathbf{i}}_{1} < {\mathbf{i}}_{2} \le {\mathbf{N}}}} {\sum\limits_{{{\varvec{\upalpha}} \in {\varvec{\Gamma}}_{{{\mathbf{i}}_{1} ,\varvec{i}_{2} }} }} {y_{\alpha }\Psi _{\alpha } \left( {{\mathbf{x}}_{{{\mathbf{i}}_{1} }} ,{\mathbf{x}}_{{{\mathbf{i}}_{2} }} } \right) \; + \cdots } } } } \\ & \quad + \,\sum\limits_{{1 \le {\mathbf{i}}_{1} < \cdots < {\mathbf{i}}_{{\mathbf{s}}} \le {\mathbf{N}}}} {\sum\limits_{{{\varvec{\upalpha}} \in {\varvec{\Gamma}}_{{{\mathbf{i}}_{1} , \ldots ,\varvec{i}_{\varvec{s}} }} }} {y_{\alpha }\Psi _{\alpha } \left( {{\mathbf{x}}_{{{\mathbf{i}}_{1} }} , \ldots ,{\mathbf{x}}_{{{\mathbf{i}}_{{\mathbf{s}}} }} } \right) \; + \cdots } } \\ & \quad +\, \sum\limits_{{{\varvec{\upalpha}} \in {\varvec{\Gamma}}_{{1, \ldots ,\varvec{N}}} }} {y_{\alpha }\Psi _{\alpha } \left( {{\mathbf{x}}_{1} , \ldots ,{\mathbf{x}}_{{\mathbf{N}}} } \right) } \\ \end{aligned} $$
(20)

with \( y_{0} = E\left[ {\widehat{{\mathbf{Y}}}} \right] \) the mean estimate of \( \widehat{{\mathbf{Y}}} \), \( \Gamma _{{i_{1} , \ldots ,i_{s} }} = \left\{ {\alpha : \begin{array}{*{20}c} {\alpha_{k} > 0\quad k \in \left( {i_{1} , \ldots ,i_{s} } \right)} \\ {\alpha_{k} = 0 \quad k \notin \left( {i_{1} , \ldots ,i_{s} } \right)} \\ \end{array} } \right\} \) the set of \( {\alpha } \) multi-indexes such that only the indexes \( \left( {i_{1} , \ldots ,i_{s} } \right) \) are non-null.

The uniqueness of decomposition in Eq. 20 leads to the conclusion that it is exactly the Sobol’ decomposition of \( \widehat{Y} \). This means that the s-ith Sobol’ indexes are straightforward:

$$ I_{{i_{1} , \ldots ,i_{s} }}^{\text{PC}} = \frac{{\sum\nolimits_{{{\varvec{\upalpha}} \in {\varvec{\Gamma}}_{{{\mathbf{i}}_{1} , \ldots ,\varvec{i}_{\varvec{s}} }} }} {\left( {y_{\alpha } } \right)^{2} } }}{{\mathop \sum \nolimits_{{\sum \alpha_{i} = 1}}^{\varvec{Q}} \left( {y_{\alpha } } \right)^{2} }} $$
(21)

where \( {\text{VAR}}\left[ {\widehat{{\mathbf{Y}}}} \right] = \mathop \sum \limits_{{\sum \alpha_{i} = 0}}^{\varvec{Q}} \left( {y_{\alpha } } \right)^{2} \). And so are the total Sobol indexes for each parameter \( X_{i} \):

$$ I_{i}^{\text{PC}} = \frac{{\sum\nolimits_{{{\mathbf{u}} \in {\mathbf{u}}_{{\mathbf{i}}} }} {\left( {y_{{\mathbf{u}}} } \right)^{2} } }}{{\mathop \sum \nolimits_{{\sum \alpha_{i} = 1}}^{{\mathbf{Q}}} \left( {y_{\alpha } } \right)^{2} }} $$
(22)

where \( {\mathbf{u}}_{{\mathbf{k}}} = \left\{ {\alpha :\alpha_{k} > 0} \right\} \) the set of \( \alpha \) multi-indexes such that the indice \( \alpha_{k} \) is non-null.

Another alternative to computing Sobol’ indexes is the the Direct Monte Carlo Method [12, 48]. This is particularly relevant when explicit model estimates are available but mostly when the PCE applicability is altered (case of discrete responses such as the cracking patterns evolution with the applied load). Otherwise, the use of PCE-based Global Sensitivity Analysis is recommended as it is considerably less time consuming (requiring less model calls compared to the Monte Carlo Methods).

Based on the ordering of \( I_{i}^{\text{PC}} \) terms, one might be led to identify some negligible indexes \( I_{i0}^{\text{PC}} \) compared to others. This informs about the negligible effect of the associated parameter \( X_{i0} \) variation over the domain \( D_{{X_{i0} }} \) on the computed response variance. The NDP can therefore be reduced—a posteriori—to \( \left( {q + 1} \right)^{{N^{\prime} \le N}} \) where \( N - N^{\prime} \) is the number of identified non-influential parameters.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouhjiti, D.EM., Baroth, J., Dufour, F. et al. Probabilistic analysis of concrete cracking using stochastic finite element methods: application to nuclear containment buildings at early age. Mater Struct 53, 93 (2020). https://doi.org/10.1617/s11527-020-01519-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-020-01519-3

Keywords

Navigation