Skip to main content
Log in

An evaluation of yield and Maxwell fluid behaviors of fly ash suspensions in alkali-silicate solutions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

The rheological behavior of fly ash suspensions in alkali-silicate solutions used to prepare geopolymers is investigated. The transient stress response of fly ash suspensions at a constant applied strain rate is influenced by both the solids loading and the rheological behavior of the activating solution. The alkali-silicate solution itself behaves like a Newtonian fluid. The fundamental response of alkali-silicate fly ash suspension under constant applied shear strain rate exhibits a transition from a yield type to Maxwell flow. The variability in the Maxwell flow to yield type behavior depends upon the solids loading given by the solution to binder ratio and the composition of the activating solution. In both Maxwell flow and yield type responses, the maximum stress before initiation of flow is directly influenced by the viscosity of the activating solution. At specific solid loading, the transition between the Maxwell flow to yield type behavior is controlled by the composition of the activating solution. The viscous nature of the alkali-silicate solution produces a rate dependent transient response under constant applied strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Assaad J, Khayat KH (2004) Assessment of thixotropy of self-consolidating concrete and concrete-equivalent-mortar—effect of binder composition and content. ACI Mater J 101(5):400–408

    Google Scholar 

  2. Choi M, Park K, Oh T (2016) Viscoelastic properties of fresh cement paste to study the flow behavior. Int J Concr Struct Mater 10(3):65–74. https://doi.org/10.1007/s40069-016-0158-3

    Article  Google Scholar 

  3. Deng SC, Zhang XB, Qin YH, Luo GX (2007) Rheological characteristic of cement clean paste and flowing behavior of fresh mixing concrete with pumping in pipeline. J Cent South Univ Technol (Engl Ed). https://doi.org/10.1007/s11771-007-0307-6

    Article  Google Scholar 

  4. Güllü H, Canakci H, Al Zangana IF (2017) Use of cement based grout with glass powder for deep mixing. Constr Build Mater 137:12–20

    Article  Google Scholar 

  5. Kim JH, Kwon SH, Kawashima S, Yim HJ (2017) Rheology of cement paste under high pressure. Cem Concr Compos 77:60–67. https://doi.org/10.1016/j.cemconcomp.2016.11.007

    Article  Google Scholar 

  6. Panda B, Singh GB, Unluer C, Tan MJ (2019) Synthesis and characterization of one-part geopolymers for extrusion based 3D concrete printing. J Clean Prod 220:610–619

    Article  Google Scholar 

  7. Panda B, Unluer C, Tan MJ (2018) Investigation of the rheology and strength of geopolymer mixtures for extrusion-based 3D printing. Cem Concr Compos 94:307–314

    Article  Google Scholar 

  8. Panda B, Unluer C, Tan MJ (2019) Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos B Eng 176:107290

    Article  Google Scholar 

  9. Perrot A, Mélinge Y, Rangeard D, Micaelli F, Estellé P, Lanos C (2012) Use of ram extruder as a combined rheo-tribometer to study the behavior of high yield stress fluids at low strain rate. Rheol Acta 51(8):743–754. https://doi.org/10.1007/s00397-012-0638-6

    Article  Google Scholar 

  10. Petit JY, Wirquin E, Vanhove Y, Khayat K (2007) Yield stress and viscosity equations for mortars and self-consolidating concrete. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2007.02.009

    Article  Google Scholar 

  11. Van Zijl GPAG, Paul SC, Tanv MJ (2016) Properties of 3D Printable Concrete. Proceedings of the 2nd International Conference on Progress in Additive Manufacturing (Pro-AM 2016). pp 421–426

  12. Canakci H, Güllü H, Alhashemy A (2019) Performances of using geopolymers made with various stabilizers for deep mixing. Materials 12(16):2542

    Article  Google Scholar 

  13. Güllü H, Cevik A, Al-Ezzi KM, Gülsan ME (2019) On the rheology of using geopolymer for grouting: a comparative study with cement-based grout included fly ash and cold bonded fly ash. Constr Build Mater 196:594–610

    Article  Google Scholar 

  14. Hajimohammadi A, Ngo T, Mendis P, Nguyen T, Kashani A, van Deventer JSJ (2017) Pore characteristics in one-part mix geopolymers foamed by H2O2: the impact of mix design. Mater Des 130(May):381–391. https://doi.org/10.1016/j.matdes.2017.05.084

    Article  Google Scholar 

  15. Hajimohammadi A, Ngo T, Mendis P, Sanjayan J (2017) Regulating the chemical foaming reaction to control the porosity of geopolymer foams. Mater Des. https://doi.org/10.1016/j.matdes.2017.02.026

    Article  Google Scholar 

  16. Laskar AI, Bhattacharjee R (2011) Rheology of fly-ash-based geopolymer concrete. ACI Mater J 108(5):536–542

    Google Scholar 

  17. Muthu Kumar E, Ramamurthy K (2017) Influence of production on the strength, density and water absorption of aerated geopolymer paste and mortar using Class F fly ash. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2017.08.153

    Article  Google Scholar 

  18. Narayanan N, Ramamurthy K (2000) Structure and properties of aerated concrete: a review. Cem Concr Compos 22(5):321–329. https://doi.org/10.1016/S0958-9465(00)00016-0

    Article  Google Scholar 

  19. Bhagath Singh GVP, Subramaniam KVL (2017) Evaluation of sodium content and sodium hydroxide molarity on compressive strength of alkali activated low-calcium fly ash. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2017.05.001

    Article  Google Scholar 

  20. Bhagath Singh GVP, Subrahmanyam C, Subramaniam KVL (2017) Dissolution of the glassy phase in low-calcium fly ash during alkaline activation. Adv Cem Res. https://doi.org/10.1680/jadcr.17.00170

    Article  Google Scholar 

  21. Bhagath Singh GVP, Subramaniam KVL (2019) Influence of processing temperature on the reaction product and strength gain in alkali-activated fly ash. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2018.10.010

    Article  Google Scholar 

  22. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Van Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci. https://doi.org/10.1007/s10853-006-0637-z

    Article  Google Scholar 

  23. Xu H, Van Deventer JSJ (2000) The geopolymerisation of alumino-silicate minerals. Int J Miner Process. https://doi.org/10.1016/S0301-7516(99)00074-5

    Article  Google Scholar 

  24. Vance K, Dakhane A, Sant G, Neithalath N (2014) Observations on the rheological response of alkali activated fly ash suspensions: the role of activator type and concentration. Rheol Acta. https://doi.org/10.1007/s00397-014-0793-z

    Article  Google Scholar 

  25. Kondepudi K, Subramaniam KVL (2019) Rheological characterization of low-calcium fly ash suspensions in alkaline silicate colloidal solutions for geopolymer concrete production. J Clean Prod. https://doi.org/10.1016/j.jclepro.2019.06.124

    Article  Google Scholar 

  26. Burgos-Montes O, Palacios M, Rivilla P, Puertas F (2012) Compatibility between superplasticizer admixtures and cements with mineral additions. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2011.12.092

    Article  Google Scholar 

  27. Criado M, Palomo A, Fernández-Jiménez A, Banfill PFG (2009) Alkali activated fly ash: effect of admixtures on paste rheology. Rheol Acta. https://doi.org/10.1007/s00397-008-0345-5

    Article  Google Scholar 

  28. Hicks JK, Montes C, Allouche EN (2013) Rheological behavior of fly-ash-based geopolymers. Geopolym Binder Syst. https://doi.org/10.1520/stp156620120094

    Article  Google Scholar 

  29. Palacios M, Puertas F, Bowen P, Houst YF (2009) Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes. J Mater Sci 44(10):2714–2723. https://doi.org/10.1007/s10853-009-3356-4

    Article  Google Scholar 

  30. Termkhajornkit P, Nawa T (2004) The fluidity of fly ash-cement paste containing naphthalene sulfonate superplasticizer. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2003.11.017

    Article  Google Scholar 

  31. Panda B, Tan MJ (2018) Experimental study on mix proportion and fresh properties of fly ash based geopolymer for 3D concrete printing. Ceram Int 44(9):10258–10265

    Article  Google Scholar 

  32. Jeong H, Han SJ, Choi SH, Lee YJ, Yi ST, Kim KS (2019) Rheological property criteria for buildable 3D printing concrete. Materials. https://doi.org/10.3390/ma12040657

    Article  Google Scholar 

  33. Kogan M, Ducloué L, Goyon J, Chateau X, Pitois O, Ovarlez G (2013) Mixtures of foam and paste: suspensions of bubbles in yield stress fluids. Rheol Acta. https://doi.org/10.1007/s00397-013-0677-7

    Article  Google Scholar 

  34. ASTM (2015) Standard specification for coal fly ash and raw or calcined natural Pozzolan for use in concrete ASTM C618-15, West Conshohocken, PA

  35. BIS (Bureau of Indian Standards) (2003) Pulverized fuel ash specification. IS 3812-part 1, Manak Bhavan, New Delhi, India

  36. Olivas A, Helsel MA, Martys NS, Ferraris CF, George WL, Ferron R (2016) Rheological measurement of suspensions without slippage: experimental and model. https://doi.org/10.6028/NIST.TN.1946

  37. Saak AW, Jennings HM, Shah SP (2001) The influence of wall slip on yield stress and viscoelastic measurements of cement paste. Cem Concr Res. https://doi.org/10.1016/S0008-8846(00)00440-3

    Article  Google Scholar 

  38. Frigaard IA, Paso KG, de Souza Mendes PR (2017) Bingham’s model in the oil and gas industry. Rheol Acta. https://doi.org/10.1007/s00397-017-0999-y

    Article  Google Scholar 

  39. Roussel N, Ovarlez G, Garrault S, Brumaud C (2012) The origins of thixotropy of fresh cement pastes. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2011.09.004

    Article  Google Scholar 

  40. Saak AW, Jennings HM, Shah SP (2004) A generalized approach for the determination of yield stress by slump and slump flow. Cem Concr Res. https://doi.org/10.1016/j.cemconres.2003.08.005

    Article  Google Scholar 

  41. Mezger T (2006) The rheology handbook: for users of rotational and oscillatory rheometers. Vincent Verlag, Hannover

    Google Scholar 

  42. Yang X, Zhu W, Yang Q (2008) The viscosity properties of sodium silicate solutions. J Solut Chem. https://doi.org/10.1007/s10953-007-9214-6

    Article  Google Scholar 

  43. Wang X, Subramaniam KV (2011) Ultrasonic monitoring of capillary porosity and elastic properties in hydrating cement paste. Cem Concr Compos. https://doi.org/10.1016/j.cemconcomp.2010.11.001

    Article  Google Scholar 

  44. Barnes HA (1997) Thixotropy—a review. J Nonnewton Fluid Mech. https://doi.org/10.1016/s0377-0257(97)00004-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from the Department of Science and Technology, Initiative to Promote Energy Efficient Habitant (I-PHEE) Grant No. TMD/CERI/BEE/2016/031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kolluru V. L. Subramaniam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadkar, A., Subramaniam, K.V.L. An evaluation of yield and Maxwell fluid behaviors of fly ash suspensions in alkali-silicate solutions. Mater Struct 52, 117 (2019). https://doi.org/10.1617/s11527-019-1429-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1429-7

Keywords

Navigation