Skip to main content
Log in

Development of a calibration methodology to improve the on-site non-destructive evaluation of concrete durability indicators

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper addresses the use of non-destructive testing (NDT) methods to assess indicators for both the concrete durability (porosity, degree of saturation) and mechanical properties (elasticity modulus, compressive strength) of reinforced concrete structures. NDT results, called “observables”, are obtained by means of ultrasonic or electromagnetic methods and then correlated with these mechanical and durability indicators. The conversion model used to transform observables into indicators depends on the actual concrete mix design. If this conversion model is unavailable for the reinforced structure under study, then the evaluation may be inadequate due to high uncertainty on the results. This paper proposes a calibration methodology to derive a conversion model appropriate for the structure by use of a minimum number of cores in order to improve the on-site evaluation. A motorway bridge is tested and characterized by NDT, after which some cores are extracted for calibration and others for validation. The cores are subsequently non-destructively characterized in the laboratory and/or used to determine indicators by means of standardized destructive methods. The non-destructive calibration protocol on cores is presented first. Next, NDT results recorded in situ and on the corresponding core are compared. Also, durability indicators deduced from on-site NDT measurements in addition to calibration are compared with reference durability indicators that have been independently determined by standard destructive methods. Results obtained by analyzing more than 1600 data fully validate the tested calibration methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bungey JH, Millard SG (1996) Testing of concrete structures, 3rd edn. Blackie Academic & Professional, Chapman & Hall, Glasgow

    Google Scholar 

  2. McCann DM, Forde MC (2001) Review of NDT methods in the assessment of concrete and masonry structures. NDT E Int 34(2):71–84

    Article  Google Scholar 

  3. Orcesi A, Frangopol DM (2011) Optimization of bridge maintenance strategies based on structural health monitoring information. Struct Saf 33(1):26–41. https://doi.org/10.1016/j.strusafe.2010.05.002

    Article  Google Scholar 

  4. Salin J, Garnier V, Dérobert X, Martini V, Balayssac J-P, Villain G, Fardeau V (2014) Recueil de recommandations - Analyse et Capitalisation pour le Diagnostic des Constructions, Concevoir et Construire pour le Développement Durable. Projet C2D2-ACDC

  5. Baroghel-Bouny V et al (2007) Concrete design for a given structure service life—durability management with regard to reinforcement corrosion and alkali-silica reaction—state of the art and guide for the implementation of a predictive performance approach based upon durability indicators. Scientific and technical documents AFGC, (French version 2004), English version

  6. Alexander M, Ballim Y, Stanish K (2008) A framework for use of durability indexes in performance-based design and specifications for reinforced concrete structures. Mater Struct 41:921–936. https://doi.org/10.1617/s11527-007-9295-0

    Article  Google Scholar 

  7. Bentur A, Diamond S, Berke NS (1997) Steel corrosion in concrete—fundamentals and civil engineering practice. E&FN SPON, London

    Google Scholar 

  8. Raharinaivo A, Arliguie G, Chaussadent T, Grimaldi G, Pollet V, Tache G (1998) La corrosion et la protection des aciers dans le béton. Presses de l’école nationale des Ponts et Chaussées, Paris

    Google Scholar 

  9. Hernández MG, Izquierdo MAG, Ibáñez A, Anaya JJ, Ullate LG (2000) Porosity estimation of concrete by ultrasonic NDE. Ultrasonics 38(1–8):531–533

    Article  Google Scholar 

  10. Lafhaj Z, Goueygou M, Djerbi A, Kaczmarek M (2006) Correlation between porosity, permeability and ultrasonic parameters of mortar with variable water/cement ratio and water content. Cem Concr Res 36(4):625–633. https://doi.org/10.1016/j.cemconres.2005.11.009

    Article  Google Scholar 

  11. Garnier V, Piwakowski B, Abraham O, Villain G, Payan C, Chaix J-F (2013) Acoustical techniques for concrete evaluation: improvements, comparisons and consistencies. Constr Build Mater 43(6):598–613. https://doi.org/10.1016/j.conbuildmat.2013.01.035

    Article  Google Scholar 

  12. Villain G, Sbartaï ZM, Dérobert X, Garnier V, Balayssac J-P (2012) Durability diagnosis of a concrete structure in a tidal zone by combining NDT methods: laboratory tests and case study. Constr Build Mater 37:893–903. https://doi.org/10.1016/j.conbuildmat.2012.03.014

    Article  Google Scholar 

  13. Ohdaira E, Masuzawa N (2000) Water content and its effect on ultrasound propagation in concrete—the possibility of NDE. Ultrasonics 38(1–8):546–552. https://doi.org/10.1016/S0041-624X(99)00158-4

    Article  Google Scholar 

  14. Robert A (1998) Dielectric permittivity of concrete between 50 MHz and 1 GHz and GPR measurements for building materials evaluation. J Appl Geophys 40:89–94

    Article  Google Scholar 

  15. Soutsos MN, Bungey JH, Millard SG, Shaw MR, Patterson A (2001) Dielectric properties of concrete and their influence on radar testing. NDT E Int 34(6):419–425

    Article  Google Scholar 

  16. Dérobert X, Iaquinta J, Klysz G, Balayssac JP (2008) Use of capacitive and GPR techniques for non-destructive evaluation of cover concrete. NDT E Int 41:44–52

    Article  Google Scholar 

  17. Sbartaï ZM, Laurens S, Rhazi J, Balayssac JP, Arliguie G (2007) Using radar direct wave for concrete condition assessment: correlation with electrical resistivity. J Appl Geophys 62(4):361–374

    Article  Google Scholar 

  18. Hugenschmidt J, Loser R (2008) Detection of chlorides and moisture in concrete structures with GPR. Mater Struct 41:785–792

    Article  Google Scholar 

  19. Lai WL, Kind T, Kruschwitz S, Wöstmann J, Wiggenhauser H (2014) Spectral absorption of spatial and temporal ground penetrating radar signals by water in construction materials. NDT E Int 67:55–63

    Article  Google Scholar 

  20. Kwon SJ, Feng MQ, Park SS (2010) Characterization of electromagnetic properties for durability performance and saturation in hardened cement mortar. NDT E Int 43(2):86–95. https://doi.org/10.1016/j.ndteint.2009.09.002

    Article  Google Scholar 

  21. Polder R, Andrade C, Elsener B, Vennesland Ø, Gulikers J, Weidert R, Raupach M (2000) Test methods for on site measurement of resistivity of concrete. Mater Struct 33(10):603–611. https://doi.org/10.1007/BF02480599

    Article  Google Scholar 

  22. van Noort R, Hunger M, Spiesz P (2016) Long-term chloride migration coefficient in slag cement-based concrete and resistivity as an alternative test method. Constr Build Mater 115:746–759. https://doi.org/10.1016/j.conbuildmat.2016.04.054

    Article  Google Scholar 

  23. Hallaji M, Seppänen A, Pour-Ghaz M (2015) Electrical resistance tomography to monitor unsaturated moisture flow in cementitious materials. Cem Concr Res 69:10–18. https://doi.org/10.1016/j.cemconres.2014.11.007

    Article  Google Scholar 

  24. Du Plooy R, Villain G, Palma Lopes S, Ihamouten A, Dérobert X, Thauvin B (2015) Electromagnetic non-destructive evaluation techniques for the monitoring of water and chloride ingress into concrete: a comparative study. Mater Struct 48:369–386. https://doi.org/10.1617/s11527-013-0189-z

    Article  Google Scholar 

  25. Tumidajski P, Schumacher A, Perron S, Gu P, Beaudoin J (1996) On the relationship between porosity and electrical resistivity in cementitious systems. Cem Concr Res 26(4):539–544

    Article  Google Scholar 

  26. Maierhofer C, Zacher G, Kohl C, Wöstmann J (2008) Evaluation of radar and complementary echo methods for NDT of concrete elements. J Nondestr Eval 27:47–57

    Article  Google Scholar 

  27. Breysse D, Klysz G, Dérobert X, Sirieix C, Lataste J-F (2008) How to combine several non-destructive techniques for a better assessment of concrete structures. Cem Concr Res 38(6):783–793. https://doi.org/10.1016/j.cemconres.2008.01.016

    Article  Google Scholar 

  28. Sbartaï ZM, Breysse D, Larget M, Balayssac J-P (2012) Combining NDT techniques for improving concrete properties evaluation. Cem Concr Compos 34(6):725–733. https://doi.org/10.1016/j.cemconcomp.2012.03.005

    Article  Google Scholar 

  29. Alani AM, Aboutalebi M, Kilic G (2014) Integrated health assessment strategy using NDT for reinforced concrete bridges. NDT E Int 61:80–94. https://doi.org/10.1016/j.ndteint.2013.10.001

    Article  Google Scholar 

  30. Rivard P, Saint-Pierre F (2009) Assessing alkali-silica reaction damage to concrete with non-destructive methods: from the lab to the field. Constr Build Mater 23:902–909. https://doi.org/10.1016/j.conbuildmat.2008.04.01

    Article  Google Scholar 

  31. Garnier V, Martini D, Salin J, Fardeau V, Sbartaï Z M, Breysse D, Piwakowski B, Villain G, Abraham O, Balayssac J-P (2014) Non destructive testing of concrete: transfer from laboratory to on-site measurement. In: 7th European workshop on structural health monitoring, Nantes, France, 8–11 July 2014

  32. Aggelis DG, Shiotani T (2008) Surface wave dispersion in cement-based media: inclusion size effect. NDT E Int 41(5):319–325. https://doi.org/10.1016/j.ndteint.2008.01.010

    Article  Google Scholar 

  33. Dérobert X, Villain G (2017) Development of a multi-linear quadratic experimental design for the EM characterization of concretes in the radar frequency-band. Constr Build Mater 136:237–245. https://doi.org/10.1016/j.conbuildmat.2016.12.061

    Article  Google Scholar 

  34. Gomez-Cardenas C (2015) Outils d’aide à l’optimisation des campagnes d’essais non destructifs sur ouvrages en béton armé, PhD report, Université de Toulouse, 4 Dec 2015

  35. Balayssac J-P, Laurens S, Arliguie G, Breysse D, Garnier V, Dérobert X, Piwakowski B (2012) Description of the general outlines of the French project SENSO—quality assessment and limits of different NDT methods. Constr Build Mater 35:131–138. https://doi.org/10.1016/j.conbuildmat.2012.03.003

    Article  Google Scholar 

  36. Benmeddour F, Villain G, Abraham O, Choinska M (2012) Development of an ultrasonic experimental device to characterise concrete for structural repair. Constr Build Mater 37(12):934–942. https://doi.org/10.1016/j.conbuildmat.2012.09.038

    Article  Google Scholar 

  37. Balayssac J-P, Garnier V (eds) (2017) Non-destructive testing and evaluation of civil engineering structures. Elsevier, Amsterdam. ISBN 9780081023051

    Google Scholar 

  38. Adous M, Queffelec P, Laguerre L (2006) Coaxial/cylindrical transition line for broadband permittivity measurement of civil engineering materials. Meas Sci Technol 17:2241–2246

    Article  Google Scholar 

  39. Villain G, Ihamouten A, Dérobert X (2017) Determination of concrete water content by coupling electromagnetic methods: coaxial/cylindrical transition line with capacitive probes. NDT E Int 88:59–70. https://doi.org/10.1016/j.ndteint.2017.02.004

    Article  Google Scholar 

  40. Du Plooy R, Palma Lopes S, Villain G, Dérobert X (2013) Development of a multi-ring resistivity cell and multi-electrode resistivity probe for investigation of cover concrete condition. NDT E Int 54:27–36. https://doi.org/10.1016/j.ndteint.2012.11.007

    Article  Google Scholar 

  41. Lataste J-F, Sirieix C, Breysse D, Frappa M (2003) Electrical resistivity measurement applied to cracking assessment on reinforced concrete structures in civil engineering. NDT E Int 36(6):383–394. https://doi.org/10.1016/S0963-8695(03)00013-6

    Article  Google Scholar 

  42. Sansalone MJ, Streett WB (1997) Impact echo: non-destructive evaluation of concrete and masonry. Bullbrier Press, Ithaca

    Google Scholar 

  43. Villain G, Le Marrec L, Rakotomanana L (2011) Determination of the bulk elastic moduli of various concretes by resonance frequency analysis of slabs submitted to impact echo. Eur J Environ Civ Eng 15(4):601–617. https://doi.org/10.1080/19648189.2011.9693350

    Article  Google Scholar 

  44. AFPC-AFREM (1997) Compte-rendu des journées techniques de l’AFPC-AFREM, Durabilité des Bétons, Méthodes recommandées pour la mesure des grandeurs associées à la durabilité. 11 et 12 décembre 1997, Toulouse

  45. EN 12390-3: 2009 Testing hardened concrete. Compressive strength of test specimens

  46. EN 13412: 2006 Products and systems for the protection and repair of concrete structures. Test methods. Determination of modulus of elasticity in compression

  47. Zhou Q, Glasser FP (2001) Thermal stability and decomposition mechanisms of ettringite at < 120°C. Cem Concr Res 31(9):1333–1339. https://doi.org/10.1016/S0008-8846(01)00558-0

    Article  Google Scholar 

  48. EN 13791: 2007 Assessment of in situ compressive strength in structures and precast concrete components

Download references

Acknowledgements

The study presented herein is part of a French research project (C2D2-ACDC) conducted within the Urban and Civil Engineering Network (RGCU) and France’s Ministry of Ecology, Sustainable Development and Energy (MEDDE). Thus, this research was funded by the RGCU Network and Ministry of Ecology, Sustainable Development and Energy. The authors would especially like to thank MEDDE’s DRIEA Directorate. The authors are also grateful to both J. Salin (EDF) and V. Fardeau (CEREMA) for their valuable collaboration, as well as to O. Coffec and A. Joubert (IFSTTAR) for their high-level technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Villain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villain, G., Garnier, V., Sbartaï, Z.M. et al. Development of a calibration methodology to improve the on-site non-destructive evaluation of concrete durability indicators. Mater Struct 51, 40 (2018). https://doi.org/10.1617/s11527-018-1165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-018-1165-4

Keywords

Navigation