Skip to main content
Log in

Use of image correlation system to study the bond behavior of FRCM-concrete joints

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

This paper presents a non-contact measurement approach, based on digital photogrammetry, applied to the experimental study of the bond behavior of fiber reinforced cementitious matrix composite to concrete joints tested in single-lap direct shear tests. The use of digital photogrammetry techniques and traditional contact measurement approaches for determining displacement and strain are investigated and compared. The results show that measurements of strain in the fiber bundles determined using the image correlation system (ICS) correlate well with those obtained from electrical strain gauges. However, differences of 38–52% were observed between the maximum strain measured with either ICS or electrical strain gages attached to the fiber bundles and the maximum strain in the fiber bundles computed from the maximum applied load. ICS is also used to measure slip and strain of bare fiber bundles, and results show that the load distribution among fiber bundles is non-uniform. The proposed measurement approach shows higher spatial measurement resolution and increased accuracy compared to traditional contact approaches by enabling measurements in each fiber bundle and overcoming the need to attach additional elements to the tested specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Orosz K, Blanksvärd T, Täljsten B, Fischer G (2010) From material level to structural use of mineral-based composites—an overview. Adv Civil Eng 2010:1–19. doi:10.1155/2010/985843

    Article  Google Scholar 

  2. Sneed LH, D’Antino T, Carloni C (2014) Investigation of bond behavior of polyparaphenylene benzobisoxazole fiber-reinforced cementitious matrix composite–concrete interface. ACI Mater J 111(5):569–580. doi:10.14359/51686604

    Google Scholar 

  3. Täljsten B, Blanksvärd T (2007) Mineral-based bonding of carbon FRP to strengthen concrete structures. J Compos Constr 11(2):120–128. doi:10.1061/(ASCE)1090-0268(2007)11:2(120)

    Article  Google Scholar 

  4. D’Ambrisi A, Focacci F (2011) Flexural strengthening of RC beams with cement-based composites. J Compos Constr 15(5):707–720. doi:10.1061/(asce)cc.1943-5614.0000218

    Article  Google Scholar 

  5. Elsanadedy HM, Almusallam TH, Alsayed SH, Al-Salloum YA (2013) Flexural strengthening of RC beams using textile reinforced mortar—experimental and numerical study. Compos Struct 97:40–55. doi:10.1016/j.compstruct.2012.09.053

    Article  Google Scholar 

  6. Sneed LH, Verre S, Carloni C, Ombres L (2016) Flexural behavior of RC beams strengthened with steel-FRCM composite. Eng Struct 127:686–699. doi:10.1016/j.engstruct.2016.09.006

    Article  Google Scholar 

  7. Triantafillou TC, Papanicolaou CG (2006) Shear strengthening of reinforced concrete members with textile reinforced mortar (TRM) jackets. Mater Struct 39(1):93–103. doi:10.1617/s11527-005-9034-3

    Article  Google Scholar 

  8. Blanksvärd T, Täljsten B, Carolin A (2009) Shear strengthening of concrete structures with the use of mineral-based composites. J Compos Constr 13(1):25–34. doi:10.1061/(ASCE)1090-0268(2009)13:1(25)

    Article  Google Scholar 

  9. Al-Salloum YA, Elsanadedy HM, Alsayed SH, Iqbal RA (2012) Experimental and numerical study for the shear strengthening of reinforced concrete beams using textile-reinforced mortar. J Compos Constr 16(1):74–90. doi:10.1061/(asce)cc.1943-5614.0000239

    Article  Google Scholar 

  10. Ortlepp R, Lorenz A, Curbach M (2009) Column strengthening with TRC: influences of the column geometry onto the confinement effect. Adv Mater Sci Eng. doi:10.1155/2009/493097

    Google Scholar 

  11. Colajanni P, De Domenico F, Recupero A, Spinella N (2014) Concrete columns confined with fibre reinforced cementitious mortars: experimentation and modelling. Constr Build Mater 52:375–384. doi:10.1016/j.conbuildmat.2013.11.048

    Article  Google Scholar 

  12. Ombres L (2014) Concrete confinement with a cement based high strength composite material. Compos Struct 109:294–304. doi:10.1016/j.compstruct.2013.10.037

    Article  Google Scholar 

  13. Ombres L, Verre S (2015) Structural behaviour of fabric reinforced cementitious matrix (FRCM) strengthened concrete columns under eccentric loading. Compos B Eng 75:235–249. doi:10.1016/j.compositesb.2015.01.042

    Article  Google Scholar 

  14. D’Antino T, Carloni C, Sneed LH, Pellegrino C (2014) Matrix-fiber bond behavior in PBO FRCM composites: a fracture mechanics approach. Eng Fract Mech 117:94–111. doi:10.1016/j.engfracmech.2014.01.011

    Article  Google Scholar 

  15. Alecci V, De Stefano M, Luciano R, Rovero L, Stipo G (2016) Experimental investigation on bond behavior of cement-matrix-based composites for strengthening of masonry structures. J Compos Constr 20(1):10. doi:10.1061/(asce)cc.1943-5614.0000598

    Article  Google Scholar 

  16. D’Ambrisi A, Feo L, Focacci F (2013) Experimental and analytical investigation on bond between carbon-FRCM materials and masonry. Compos B Eng 46:15–20. doi:10.1016/j.compositesb.2012.10.018

    Article  Google Scholar 

  17. Ascione L, de Felice G, De Santis S (2015) A qualification method for externally bonded fibre reinforced cementitious matrix (FRCM) strengthening systems. Compos B Eng 78:497–506. doi:10.1016/j.compositesb.2015.03.079

    Article  Google Scholar 

  18. Malena M, de Felice G (2014) Debonding of composites on a curved masonry substrate: experimental results and analytical formulation. Compos Struct 112:194–206. doi:10.1016/j.compstruct.2014.02.004

    Article  Google Scholar 

  19. Carloni C, Bournas D, Carozzi G, D’Antino T, Fava G, Focacci F, Giacomin G, Mantegazza G, Pellegrino C, Perinelli C, Poggi C (2016) Fiber reinforced composites with cementitious (inorganic) matrix. In: Sena-Cruz CPaJ (ed) Design procedures for the use of composites in strengthening of reinforced concrete structures, vol RILEM State-of-the-Art Reports 19. RILEM, pp 349–391

  20. Taljsten B (1997) Defining anchor lengths of steel and CFRP plates bonded to concrete. Int J Adhes Adhes 17(4):319–327. doi:10.1016/s0143-7496(97)00018-3

    Article  Google Scholar 

  21. Carrara P, Ferretti D, Freddi F, Rosati G (2011) Shear tests of carbon fiber plates bonded to concrete with control of snap-back. Eng Fract Mech 78(15):2663–2678. doi:10.1016/j.engfracmech.2011.07.003

    Article  Google Scholar 

  22. Hadigheh SA, Gravina RJ, Setunge S (2015) Identification of the interfacial fracture mechanism in the FRP laminated substrates using a modified single lap shear test set-up. Eng Fract Mech 134:317–329. doi:10.1016/j.engfracmech.2014.12.001

    Article  Google Scholar 

  23. Czaderski C, Soudki K, Motavalli M (2010) Front and side view image correlation measurements on FRP to concrete pull-off bond tests. J Compos Constr 14(4):451–463. doi:10.1061/(ASCE)CC.1943-5614.0000106

    Article  Google Scholar 

  24. Subramaniam KV, Carloni C, Nobile L (2007) Width effect in the interface fracture during shear debonding of FRP sheets from concrete. Eng Fract Mech 74(4):578–594. doi:10.1016/j.engfracmech.2006.09.002

    Article  Google Scholar 

  25. Grace C, Yang Y, Sneed L (2012) Fracture mechanics approaches to debonding behavior of reinforced concrete members with externally-bonded fiber reinforced polymer laminates. ACI Spec Publ. doi:10.14359/51683907

    Google Scholar 

  26. Carloni C, D’Antino T, Sneed L, Pellegrino C (2014) Role of the matrix layers in the stress-transfer mechanism of FRCM composites bonded to a concrete substrate. J Eng Mech 141(6):04014165. doi:10.1061/(ASCE)EM.1943-7889.0000883

    Article  Google Scholar 

  27. D’Ambrisi A, Feo L, Focacci F (2013) Experimental analysis on bond between PBO-FRCM strengthening materials and concrete. Compos B Eng 44(1):524–532. doi:10.1016/j.compositesb.2012.03.011

    Article  Google Scholar 

  28. Sneed LH, D’Antino T, Carloni C, Pellegrino C (2015) A comparison of the bond behavior of PBO-FRCM composites determined by double-lap and single-lap shear tests. Cement Concr Compos 64:37–48. doi:10.1016/j.cemconcomp.2015.07.007

    Article  Google Scholar 

  29. Colombo IG, Magri A, Zani G, Colombo M, di Prisco M (2013) Textile reinforced concrete: experimental investigation on design parameters. Mater Struct 46(11):1933–1951. doi:10.1617/s11527-013-0017-5

    Article  Google Scholar 

  30. D’Antino T, Sneed LH, Carloni C, Pellegrino C (2015) Influence of the substrate characteristics on the bond behavior of PBO FRCM-concrete joints. Constr Build Mater 101:838–850. doi:10.1016/j.conbuildmat.2015.10.045

    Article  Google Scholar 

  31. D’Antino T, Sneed LH, Carloni C, Pellegrino C (2016) Effect of the inherent eccentricity in single-lap direct-shear tests of PBO FRCM-concrete joints. Compos Struct 142:117–129. doi:10.1016/j.compstruct.2016.01.076

    Article  Google Scholar 

  32. Carozzi FG, Milani G, Poggi C (2014) Mechanical properties and numerical modeling of fabric reinforced cementitious matrix (FRCM) systems for strengthening of masonry structures. Compos Struct 107:711–725. doi:10.1016/j.compstruct.2013.08.026

    Article  Google Scholar 

  33. Carozzi FG, Colombi P, Fava G, Poggi C (2016) A cohesive interface crack model for the matrix–textile debonding in FRCM composites. Compos Struct 143:230–241. doi:10.1016/j.compstruct.2016.02.019

    Article  Google Scholar 

  34. Carloni C, D’Antino T, Sneed LH, Pellegrino C (2015) An investigation of PBO FRCM-concrete joint behavior using a three-dimensional numerical approach. In: Kruis J, Tsompanakis Y, Topping BHV (eds) Fifteenth international conference on civil, structural and environmental engineering computing (CC2015), Prague, Czech Republic, p 15

  35. Baqersad J, Poozesh P, Niezrecki C, Avitabile P (2016) Photogrammetry and optical methods in structural dynamics—a review. Mech Syst Signal Process. doi:10.1016/j.ymssp.2016.02.011

    Google Scholar 

  36. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI 8(6):679–698. doi:10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  37. McCormick N, Lord J (2010) Digital image correlation. Mater Today 13(12):52–54. doi:10.1016/S1369-7021(10)70235-2

    Article  Google Scholar 

  38. Ghorbani R, Matta F, Sutton MA (2015) Full-field deformation measurement and crack mapping on confined masonry walls using digital image correlation. Exp Mech 55(1):227–243. doi:10.1007/s11340-014-9906-y

    Article  Google Scholar 

  39. Xiao Z, Liang J, Yu D, Tang Z, Asundi A (2010) An accurate stereo vision system using cross-shaped target self-calibration method based on photogrammetry. Opt Lasers Eng 48(12):1252–1261. doi:10.1016/j.optlaseng.2010.06.006

    Article  Google Scholar 

  40. ASTM:D1577 (2012) Standard test methods for linear density of textile fibers. ASTM International, West Conshohocken, PA, United States

  41. ASTM:C348 (2014) Standard test method for flexural strength of hydraulic-cement mortars. ASTM International, West Conshohocken, PA, United States

  42. ASTM:C349 (2014) Standard test method for compressive strength of hydraulic-cement mortars (using portions of prisms broken in flexure). ASTM International, West Conshohocken, PA, United States

  43. EN:12390-3 (2009) Testing hardened concrete—part 3: compressive strength of test specimens. European Committee for Standardization, Brussels, Belgium

  44. ICRI (1997) Selecting and spedifying concrete surface preparation for sealers, coatings, and polymer overlays. Technical Guideline No. 03732, International Concrete Repair Institute, Rosemont, IL, United States

  45. Sabau C, Gonzalez-Libreros J, Sneed L, Sas G, Pellegrino C (2016) Influence of fiber type on the bonding behavior of FRCM composite strips applied to concrete substrates. In: Paper presented at the 8th international conference on FRP composites in civil engineering, Hong Kong

  46. D’Antino T, Pellegrino C, Carloni C, Sneed LH, Giacomin G (2015) Experimental analysis of the bond behavior of glass, carbon, and steel FRCM composites. Key Eng Mater. doi:10.4028/www.scientific.net/KEM.624.371

    Google Scholar 

  47. D’Antino T (2014) Bond behavior in fiber reinforced composites and fiber reinforced cemetitious matrix composites. Doctoral Thesis University of Padova, Padova, Italy

  48. Banholzer B (2006) Bond of a strand in a cementitious matrix. Mater Struct 39(10):1015–1028. doi:10.1617/s11527-006-9115-y

    Article  Google Scholar 

  49. AC434 (2011) Acceptance criteria for masonry and concrete strengthening using fiber-reinforced cementitious matrix (FRCM) composite systems. ICC Evaluation Service, Birminghan, AL 35213, United States

  50. Mazzoleni P (2013) Uncertainty estimation and reduction in digital image correlation measurements. Doctoral thesis, Polytechnic University of Milan, Milan, Italy

Download references

Acknowledgements

This work was supported by the European Commission (Contract number MC-ITN-2013-607851). The first and second authors would like to acknowledge the technical and economical support from the European Network for Durable Reinforcement and Rehabilitation Solutions (endure), a Marie Skłodowska Curie Initial Training Network. The experimental tests were conducted at University of Padova in collaboration with Luleå University of Technology. G&P Intech of Altavilla Vicentina (Italy) is gratefully acknowledged for providing the FRCM composite materials. The authors would like to acknowledge Dr. Christian Carloni of the University of Bologna (Italy) for his input and fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. H. Sneed.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabau, C., Gonzalez-Libreros, J.H., Sneed, L.H. et al. Use of image correlation system to study the bond behavior of FRCM-concrete joints. Mater Struct 50, 172 (2017). https://doi.org/10.1617/s11527-017-1036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-017-1036-4

Keywords

Navigation