Skip to main content
Log in

A layered nonstoichiometric lepidocrocite-type sodium titanate anode material for sodium-ion batteries

  • Original research
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Highlights

Further performance improvements of sodium-ion batteries require better-performing electrode materials, particularly anodes. The layered lepidocrocite-type sodium titanate (Na0.74Ti1.8150.185O4·1.27H2O), showing a high Na+ storage capacity of 229 mAh g−1 at relatively low average voltage of ca. 0.6 V vs. Na+/Na, is a promising candidate anode material.

Abstract

A lepidocrocite-structured sodium titanate prepared by ion-exchange of a Cs-containing precursor shows promise as an anode material for sodium ion batteries, with a discharge capacity of up to 229 mAh g−1 at an average potential of about 0.6 V vs. Na+/Na. Titanium vacancies in the metal oxide layers provide additional sites for sodium intercalation in addition to interlayer sites, which accounts for the higher capacity compared to other previously reported lepidocrocite-structured titanates. By screening a series of electrolyte formulations and binders, we were able to improve the first-cycle coulombic efficiency to 81.8% and 94.7% respectively using CMC/SBR-based and binder-free electrodes in ether electrolytes. The electrochemical consequences of short-term air-exposure on the electrodes are also discussed.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in the electronic supplementary materials.

References

  1. J.-M. Tarascon, Joule 4(8), 1616–1620 (2020)

    Article  Google Scholar 

  2. I. Hasa, S. Mariyappan, D. Saurel, P. Adelhelm, A.Y. Koposov, C. Masquelier, L. Croguennec, M. Casas-Cabanas, J Power Sources 482, 1703 (2021)

    Article  Google Scholar 

  3. S. Mariyappan, Q. Wang, J.M. Tarascon, J. Electrochem. Soc. 165(16), A3714–A3722 (2018)

    Article  CAS  Google Scholar 

  4. B. Zhang, G. Rousse, D. Foix, R. Dugas, D.A. Corte, J.M. Tarascon, Adv Mater 28(44), 9824–9830 (2016)

    Article  CAS  Google Scholar 

  5. M. Shirpour, J. Cabana, M. Doeff, Energy Environ. Sci. 6(8), 2245–2550 (2013)

    Article  Google Scholar 

  6. S. Guo, J. Yi, Y. Sun, H. Zhou, Energy Environ. Sci. 9(10), 2978–3006 (2016)

    Article  CAS  Google Scholar 

  7. M.N. Tahir, B. Oschmann, D. Buchholz, X. Dou, I. Lieberwirth, M. Panthofer, W. Tremel, R. Zentel, S. Passerini, Adv Energy Mater 6(4), 1501489 (2016)

    Article  Google Scholar 

  8. M.M. Doeff, J. Cabana, M. Shirpour, J. Inorg. Organomet. Polym Mater. 24(1), 5–14 (2013)

    Article  Google Scholar 

  9. J. Alvarado, G. Barim, C.D. Quilty, E. Yi, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, M.M. Doeff, J. Mater. Chem. A 8(38), 19917–19926 (2020)

    Article  CAS  Google Scholar 

  10. A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, J. Mater. Chem. A 1(7), 2653–2662 (2013)

    Article  CAS  Google Scholar 

  11. M. Shirpour, J. Cabana, M. Doeff, Chem. Mater. 26(8), 2502–2512 (2014)

    Article  CAS  Google Scholar 

  12. I.M. Markus, S. Engelke, M. Shirpour, M. Asta, M. Doeff, Chem. Mater. 28(12), 4284–4291 (2016)

    Article  CAS  Google Scholar 

  13. A. Katogi, K. Kubota, K. Chihara, K. Miyamoto, T. Hasegawa, S. Komaba, ACS Appl. Energy Mater. 1(8), 3630–3635 (2018)

    Article  CAS  Google Scholar 

  14. T. Sasaki, Y. Komatsu, Y. Fujiki, J. Chem. Soc. Chem. Commun. 86, 817–818 (1991)

    Article  Google Scholar 

  15. J.E. Bertie, Z. Lan, Appl. Spectrosc. 50(8), 1047–1057 (1996)

    Article  CAS  Google Scholar 

  16. A.A. Kananenka, J.L. Skinner, J. Chem. Phys. 148(24), 244107 (2018)

    Article  Google Scholar 

  17. H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Adv. Energy Mater. 7(24), 5031–5042 (2017)

    Article  Google Scholar 

  18. H. He, D. Sun, Y. Tang, H. Wang, M. Shao, Energy Storage Mater. 23, 233–251 (2019)

    Article  Google Scholar 

  19. Y. Morikawa, Y. Yamada, K. Doi, S.-I. Nishimura, A. Yamada, Electrochemistry 88(3), 151–156 (2020)

    Article  CAS  Google Scholar 

  20. Z.-L. Xu, K. Lim, K.-Y. Park, G. Yoon, W.M. Seong, K. Kang, Adv. Funct. Mater. 28(29), 8160–8169 (2018)

    Article  Google Scholar 

  21. Y. Sun, L. Zhao, H. Pan, X. Lu, L. Gu, Y.S. Hu, H. Li, M. Armand, Y. Ikuhara, L. Chen, X. Huang, Nat Commun 4, 1870 (2013)

    Article  Google Scholar 

  22. L. El Ouatani, R. Dedryvère, J.B. Ledeuil, C. Siret, P. Biensan, J. Desbrières, D. Gonbeau, J. Power Sources 189(1), 72–80 (2009)

    Article  Google Scholar 

  23. Y. Shao, J. Xiao, W. Wang, M. Engelhard, X. Chen, Z. Nie, M. Gu, L.V. Saraf, G. Exarhos, J.G. Zhang, J. Liu, Nano Lett 13(8), 3909–3914 (2013)

    Article  CAS  Google Scholar 

  24. F. Sun, H. Wang, Z. Qu, K. Wang, L. Wang, J. Gao, J. Gao, S. Liu, Y. Lu, Adv. Energy Mater. 32, 1907840 (2020)

    CAS  Google Scholar 

  25. J. Wang, J. Bi, W. Wang, Z. Xing, Y. Bai, M. Leng, X. Gao, J. Electrochem. Soc. 167(9), 090539 (2020)

    Article  CAS  Google Scholar 

  26. Y. Zhang, Z. Ding, C.W. Foster, C.E. Banks, X. Qiu, X. Ji, Adv. Funct. Mater. 27(27), 157 (2017)

    Google Scholar 

  27. S.S.M. Bhat, B. Babu, M. Feygenson, J.C. Neuefeind, M.M. Shaijumon, ACS Appl Mater Interfaces 10(1), 437–447 (2018)

    Article  CAS  Google Scholar 

  28. D. Wu, X. Li, B. Xu, N. Twu, L. Liu, G. Ceder, Energy Environ. Sci. 8(1), 195–202 (2015)

    Article  CAS  Google Scholar 

  29. Y. Wang, X. Yu, S. Xu, J. Bai, R. Xiao, Y.S. Hu, H. Li, X.Q. Yang, L. Chen, X. Huang, Nat. Commun. 4, 2365 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Assistant Secretary for Energy, Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Work at the Molecular Foundry of Lawrence Berkeley National Lab (LBNL) was supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. We would like to acknowledge the use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, that is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. We thank Dr Sami Sainio for collecting soft X-ray absorption spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marca M. Doeff.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, W., Alvarado, J., Barim, G. et al. A layered nonstoichiometric lepidocrocite-type sodium titanate anode material for sodium-ion batteries. MRS Energy & Sustainability 8, 88–97 (2021). https://doi.org/10.1557/s43581-021-00008-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43581-021-00008-6

Keywords

Navigation