Skip to main content

Advertisement

Log in

Effect of Praseodymium Doping on Structural and Electrochemical Performance of Lithium Titanate Oxide (Li4Ti5O12) as New Anode Material for Lithium-Sulfur Batteries

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In spite of their high theoretical energy density and potentially low cost, lithium-sulfur batteries face several challenges in their path toward widespread adoption, among which introduction of an appropriate anode seems to be one of the most difficult. We report herein on a modified anode based on lithium titanate oxide (Li4Ti5O12) (LTO) doped with praseodymium (Pr) element. A fairly simple sol–gel procedure was employed to prepare praseodymium-doped lithium titanate oxide (Pr-LTO). Different techniques were then applied for structural and morphological characterization of LTO and Pr-LTO, including x-ray diffraction analysis, Brunauer–Emmett–Teller surface area measurements, and scanning electron microscopy. Although the LTO and Pr-LTO electrodes were prepared using similar procedures, the Pr-LTO electrode exhibited higher capacity as well as better cycling efficiency compared with LTO. The Pr-LTO electrode demonstrated high rate capability along with reversible capacity of 173 mAh g−1, 116 mAh g−1, and 62 mAh g−1 at 0.05 C, 1 C, and 2 C, respectively. Electrochemical impedance spectroscopy also confirmed that Pr-LTO had higher electronic conductivity and faster lithium-ion diffusion compared with LTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Amine, R. Kanno, and Y. Tzeng, MRS Bull. 39, 395 (2014).

    Article  CAS  Google Scholar 

  2. L. Chen and L.L. Shaw, J. Power Sources 267, 770 (2014).

    Article  CAS  Google Scholar 

  3. Z. Pourali, M.R. Sovizi, and M.R. Yaftian, J. Alloys Compd. 738, 130 (2018).

    Article  CAS  Google Scholar 

  4. M.R. Sovizi and Z. Fahimi, J. Taiwan Inst. Chem. E 86, 270 (2018).

    Article  CAS  Google Scholar 

  5. M.G. Kim and J. Cho, Adv. Funct. Mater. 19, 1497 (2009).

    Article  CAS  Google Scholar 

  6. J.W. Long, B. Dunn, D.R. Rolison, and H.S. White, Chem. Rev. 104, 4463 (2004).

    Article  CAS  Google Scholar 

  7. R. Cao, W. Xu, D. Lv, J. Xiao, and J.G. Zhang, Adv. Energy Mater. 5, 1402273 (2015).

    Article  Google Scholar 

  8. G. Xu, B. Ding, J. Pan, P. Nie, L. Shen, and X. Zhang, J. Mater. Chem. A 2, 12662 (2014).

    Article  CAS  Google Scholar 

  9. S.T. Seyyedin, M.R. Sovizi, and M.R. Yaftian, Chem. Pap. 70, 1590 (2016).

    Article  CAS  Google Scholar 

  10. M.R. Sovizi and A.R. Madram, Chem. Pap. 71, 21 (2016).

    Article  Google Scholar 

  11. S.T. Seyyedin, M.R. Yaftian, and M.R. Sovizi, J. Solid State Electrochem. 21, 649 (2016).

    Article  Google Scholar 

  12. M.R. Sovizi, M.R. Yaftian, and S.T. Seyyedin, New J. Chem. 41, 12589 (2017).

    Article  CAS  Google Scholar 

  13. G. Rong, X. Zhang, W. Zhao, Y. Qiu, M. Liu, F. Ye, Y. Xu, J. Chen, Y. Hou, and W. Li, Adv. Mater. 29, 1606187 (2017).

    Article  Google Scholar 

  14. Y.M. Lee, N.-S. Choi, J.H. Park, and J.-K. Park, J. Power Sources 119, 964 (2003).

    Article  Google Scholar 

  15. K.N. Wood, E. Kazyak, A.F. Chadwick, K.-H. Chen, J.-G. Zhang, K. Thornton, and N.P. Dasgupta, ACS Cent. Sci. 2, 790 (2016).

    Article  CAS  Google Scholar 

  16. T. Osaka, T. Momma, Y. Matsumoto, and Y. Uchida, J. Electrochem. Soc. 144, 1709 (1997).

    Article  CAS  Google Scholar 

  17. G. Zheng, S.W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, and Y. Cui, Nat. Nanotechnol. 9, 618 (2014).

    Article  CAS  Google Scholar 

  18. R. Elazari, G. Salitra, G. Gershinsky, A. Garsuch, A. Panchenko, and D. Aurbach, Electrochem. Commun. 14, 21 (2012).

    Article  CAS  Google Scholar 

  19. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R.P. Zaccaria, and C. Capiglia, J. Power Sources 257, 421 (2014).

    Article  CAS  Google Scholar 

  20. J. Brückner, S. Thieme, F. Böttger-Hiller, I. Bauer, H.T. Grossmann, P. Strubel, H. Althues, S. Spange, and S. Kaskel, Adv. Funct. Mater. 24, 1284 (2014).

    Article  Google Scholar 

  21. B. Duan, W. Wang, H. Zhao, A. Wang, M. Wang, K. Yuan, Z. Yu, and Y. Yang, ECS Electrochem. Lett. 2, A47 (2013).

    Article  CAS  Google Scholar 

  22. X. Zhang, W. Wang, A. Wang, Y. Huang, K. Yuan, Z. Yu, J. Qiu, and Y. Yang, J. Mater. Chem. A 2, 11660 (2014).

    Article  CAS  Google Scholar 

  23. C. Huang, J. Xiao, Y. Shao, J. Zheng, W.D. Bennett, D. Lu, L.V. Saraf, M. Engelhard, L. Ji, and J. Zhang, Nat. Commun. 5, 3015 (2014).

    Article  Google Scholar 

  24. M. Reddy, G. Subba Rao, and B. Chowdari, Chem. Rev. 113, 5364 (2013).

    Article  CAS  Google Scholar 

  25. M. Wagemaker, E.R. van Eck, A.P. Kentgens, and F.M. Mulder, J. Phys. Chem. B 113, 224 (2008).

    Article  Google Scholar 

  26. T.-F. Yi, L.-J. Jiang, J. Shu, C.-B. Yue, R.-S. Zhu, and H.-B. Qiao, J. Phys. Chem. Solids 71, 1236 (2010).

    Article  CAS  Google Scholar 

  27. Y. Wang, H. Li, P. He, E. Hosono, and H. Zhou, Nanoscale 2, 1294 (2010).

    Article  CAS  Google Scholar 

  28. L. Qiao, X. Sun, Z. Yang, X. Wang, Q. Wang, and D. He, Carbon 54, 29 (2013).

    Article  CAS  Google Scholar 

  29. Y. Wang, H. Rong, B. Li, L. Xing, X. Li, and W. Li, J. Power Sources 246, 213 (2014).

    Article  CAS  Google Scholar 

  30. C. Lin, X. Fan, Y. Xin, F. Cheng, M.O. Lai, H. Zhou, and L. Lu, J. Mater. Chem. A 2, 9982 (2014).

    Article  CAS  Google Scholar 

  31. K.-T. Kim, C.-Y. Yu, C.S. Yoon, S.-J. Kim, Y.-K. Sun, and S.-T. Myung, Nano Energy 12, 725 (2015).

    Article  CAS  Google Scholar 

  32. C. Lin, M.O. Lai, L. Lu, H. Zhou, and Y. Xin, J. Power Sources 244, 272 (2013).

    Article  CAS  Google Scholar 

  33. C. Chen, J. Vaughey, A. Jansen, D. Dees, A. Kahaian, T. Goacher, and M. Thackeray, J. Electrochem. Soc. 148, A102 (2001).

    Article  CAS  Google Scholar 

  34. X. Li, M. Qu, and Z. Yu, J. Alloys Compd. 487, L12 (2009).

    Article  CAS  Google Scholar 

  35. B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, Electrochim. Acta 55, 5453 (2010).

    Article  CAS  Google Scholar 

  36. R.B. Khomane, A. Prakash, K. Ramesha, and M. Sathiya, Mater. Res. Bull. 46, 1139 (2011).

    Article  CAS  Google Scholar 

  37. L. Suchow and M. Kokta, J. Solid State Chem. 5, 329 (1972).

    Article  CAS  Google Scholar 

  38. Z. Zhong, Electrochem. Solid State Lett. 10, A267 (2007).

    Article  CAS  Google Scholar 

  39. S. Lowell and J.E. Shields, Powder Surface Area and Porosity (Berlin: Springer, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Sovizi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sovizi, M.R., Pourali, S.M. Effect of Praseodymium Doping on Structural and Electrochemical Performance of Lithium Titanate Oxide (Li4Ti5O12) as New Anode Material for Lithium-Sulfur Batteries. J. Electron. Mater. 47, 6525–6531 (2018). https://doi.org/10.1007/s11664-018-6552-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6552-7

Keywords

Navigation