Skip to main content
Log in

Sensing of Fe3+ ions and fluorescent bioimaging probes utilizing calabura fruit-derived carbon nanoparticles

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The calabura fruit (Muntingia calabura L.), one of the Neotropical trees with a high carbonate content, has been overlooked as an abundant fruit in Vietnam. In order to employ it as a reproducible raw resource with a credible application, an eco-friendly approach needs to be considerably developed for its use to be effective. Here, using a one-pot hydrothermal process, M. calabura was transformed into attractive fluorescent carbon nanoparticles (CNPs). The optical and structural properties of the synthesized CNPs were analyzed using UV–Vis absorption, photoluminescence (PL) spectroscopy, TEM, Raman, and Fourier transform infrared spectroscopy (FTIR). According to the analysis, CNPs have an average diameter of ~ 25.9 nm. Interestingly, selective quenching of CNPs’ fluorescence by Fe3+ occurred in the range of 27 to 200 µM, with a detection limit of 43.7 µM. Furthermore, a probe of calabura fruit-derived CNPs in bioimaging was successfully applied to mesenchymal stem cells (MSCs). Based on the findings, it would be beneficial to focus on creating CNPs structures with improved quality for sensing and biological applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data supporting this study are included within the article.

References

  1. W. Zhang, L. Jia, X. Guo, R. Yang, Y. Zhang, Z. Zhao, Green synthesis of up- and down-conversion photoluminescent carbon dots from coffee beans for Fe3+ detection and cell imaging. Analyst 144(24), 7421–7431 (2019). https://doi.org/10.1039/C9AN01953G

    Article  CAS  PubMed  ADS  Google Scholar 

  2. J. Xu, X. Jie, F. Xie, H. Yang, W. Wei, Z. Xia, Flavonoid moiety-incorporated carbon dots for ultrasensitive and highly selective fluorescence detection and removal of Pb2+. Nano Res. 11, 3648–3657 (2018). https://doi.org/10.1007/s12274-017-1931-6

    Article  CAS  Google Scholar 

  3. M. Zulfajri, G. Gedda, C.-J. Chang, Y.-P. Chang, G.G. Huang, Cranberry beans derived carbon dots as a potential fluorescence sensor for selective detection of Fe3+ ions in aqueous solution. ACS Omega 4(13), 15382–15392 (2019). https://doi.org/10.1021/acsomega.9b01333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Xu, G. Wang, Y. Li, H. Dong, S. Yang, P. He, G.J.S. Ding, Carbon-based quantum dots with solid-state photoluminescent: mechanism, implementation, and application. Small 16(48), 2004621 (2020). https://doi.org/10.1002/smll.202070262

    Article  CAS  Google Scholar 

  5. H. Ding, X.-H. Li, X.-B. Chen, J.-S. Wei, X.-B. Li, H.-M. Xiong, Surface states of carbon dots and their influences on luminescence. J. Appl. Phys. 127(23), 231101 (2020). https://doi.org/10.1063/1.5143819

    Article  CAS  ADS  Google Scholar 

  6. X. Gao, Y. Lu, R. Zhang, S. He, J. Ju, M. Liu, L. Li, W. Chen, One-pot synthesis of carbon nanodots for fluorescence turn-on detection of Ag+ based on the Ag+-induced enhancement of fluorescence. J. Mater. Chem. C 3(10), 2302–2309 (2015). https://doi.org/10.1039/C4TC02582B

    Article  CAS  Google Scholar 

  7. S.D.T. Landa, N.K.R. Bogireddy, I. Kaur, V. Batra, V. Agarwal, Heavy metal ion detection using green precursor derived carbon dots. Iscience (2022). https://doi.org/10.1016/j.isci.2022.103816

    Article  Google Scholar 

  8. A. Shander, M.D. Cappellini, L.T. Goodnough, Iron overload and toxicity: the hidden risk of multiple blood transfusions. Vox Sang. 97(3), 185–197 (2009). https://doi.org/10.1111/j.1423-0410.2009.01207.x

    Article  CAS  PubMed  Google Scholar 

  9. G.J. Kontoghiorghes, C.N. Kontoghiorghe, Iron and chelation in biochemistry and medicine: new approaches to controlling iron metabolism and treating related diseases. Cells 9(6), 1456 (2020). https://doi.org/10.3390/cells9061456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. D. Witkowska, J. Słowik, K. Chilicka, Heavy metals and human health: possible exposure pathways and the competition for protein binding sites. Molecules 26(19), 6060 (2021). https://doi.org/10.3390/molecules26196060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Nagaraj, S. Ramalingam, C. Murugan, S. Aldawood, J.-O. Jin, I. Choi, M. Kim, Detection of Fe3+ ions in aqueous environment using fluorescent carbon quantum dots synthesized from endosperm of Borassus flabellifer. Environ. Res. 212, 113273 (2022). https://doi.org/10.1016/j.envres.2022.113273

    Article  CAS  PubMed  Google Scholar 

  12. P. Zhao, Q. Zhang, J. Cao, C. Qian, J. Ye, S. Xu, Y. Zhang, Y. Li, Facile and green synthesis of highly fluorescent carbon quantum dots from water hyacinth for the detection of ferric iron and cellular imaging. Nanomaterials 12(9), 1528 (2022). https://doi.org/10.3390/nano12091528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. W. Meng, X. Bai, B. Wang, Z. Liu, S. Lu, B. Yang, Biomass-derived carbon dots and their applications. Energy Environ. Mater. 2(3), 172–192 (2019). https://doi.org/10.1002/eem2.12038

    Article  CAS  Google Scholar 

  14. H. Pereira, Chemical composition and variability of cork from Quercus suber L. Wood Sci. Technol. 22(3), 211–218 (1988). https://doi.org/10.1007/BF00386015

    Article  CAS  Google Scholar 

  15. N.K. Quang, N.N. Hieu, V.V.Q. Bao, V.T. Phuoc, L.Q. Doc, N.M. Tri, C.T.C. Ha, Hydrothermal synthesis of carbon nanodots from waste wine cork and their use in biocompatible fluorescence imaging. N. Carbon Mater. 37(3), 595–602 (2022). https://doi.org/10.1016/S1872-5805(22)60608-5

    Article  CAS  Google Scholar 

  16. N.K. Quang, L.V.T. Son, Sensitive detection of Fe3+ ions and cell imaging of carbon nanodots derived from canistel (Pouteria campechiana). MRS Adv. 7(13), 278–283 (2022). https://doi.org/10.1557/s43580-022-00267-6

    Article  CAS  ADS  Google Scholar 

  17. A.M. Nima, P. Amritha, V. Lalan, G. Subodh, Green synthesis of blue-fluorescent carbon nanospheres from the pith of tapioca (Manihot esculenta) stem for Fe(III) detection. J. Mater. Sci. Mater. Electron. 31, 21767–21778 (2020). https://doi.org/10.1007/s10854-020-04689-6

    Article  CAS  Google Scholar 

  18. R. Purbia, S. Paria, A simple turn on fluorescent sensor for the selective detection of thiamine using coconut water derived luminescent carbon dots. Biosens. Bioelectron. 79, 467–475 (2016). https://doi.org/10.1016/j.bios.2015.12.087

    Article  CAS  PubMed  Google Scholar 

  19. H. Li, Z. Kang, Y. Liu, S.-T. Lee, Carbon nanodots: synthesis, properties and applications. J. Mater. Chem. 22(46), 24230–24253 (2012). https://doi.org/10.1039/C2JM34690G

    Article  CAS  Google Scholar 

  20. L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nat. Nanotechnol. 17(2), 112–130 (2022). https://doi.org/10.1038/s41565-021-01051-7

    Article  CAS  PubMed  ADS  Google Scholar 

  21. N. Rabiee, S. Iravani, R.S. Varma, Biowaste-derived carbon dots: a perspective on biomedical potentials. Molecules 27(19), 6186 (2022). https://doi.org/10.3390/molecules27196186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. Shabbir, E. Csapó, M. Wojnicki, Carbon quantum dots: the role of surface functional groups and proposed mechanisms for metal ion sensing. Inorganics 11(6), 262 (2023). https://doi.org/10.3390/inorganics11060262

    Article  CAS  Google Scholar 

  23. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 84(12), 5351–5357 (2012). https://doi.org/10.1021/ac3007939

    Article  CAS  PubMed  Google Scholar 

  24. S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents. Chem. Commun. 48(70), 8835–8837 (2012). https://doi.org/10.1039/C2CC33796G

    Article  CAS  Google Scholar 

  25. P.-C. Hsu, P.-C. Chen, C.-M. Ou, H.-Y. Chang, H.-T. Chang, Extremely high inhibition activity of photoluminescent carbon nanodots toward cancer cells. J. Mater. Chem. B 1(13), 1774–1781 (2013). https://doi.org/10.1039/C3TB00545C

    Article  CAS  PubMed  Google Scholar 

  26. Z.-F. Pu, Q.-L. Wen, Y.-J. Yang, X.-M. Cui, J. Ling, P. Liu, Q.-E. Cao, Fluorescent carbon quantum dots synthesized using phenylalanine and citric acid for selective detection of Fe3+ ions. Spectrochim. Acta A 229, 117944 (2020). https://doi.org/10.1016/j.saa.2019.117944

    Article  CAS  Google Scholar 

  27. S. Chandra, A.R. Chowdhuri, D. Laha, S.K. Sahu, Fabrication of nitrogen- and phosphorous-doped carbon dots by the pyrolysis method for iodide and iron(III) sensing. Luminescence 33(2), 336–344 (2018). https://doi.org/10.1002/bio.3418

    Article  CAS  PubMed  Google Scholar 

  28. V. Ramanan, S.K. Thiyagarajan, K. Raji, R. Suresh, R. Sekar, P. Ramamurthy, Outright green synthesis of fluorescent carbon dots from eutrophic algal blooms for in vitro imaging. ACS Sustain. Chem. Eng. 4(9), 4724–4731 (2016). https://doi.org/10.1021/acssuschemeng.6b00935

    Article  CAS  Google Scholar 

  29. F. Du, M. Zhang, X. Li, J. Li, X. Jiang, Z. Li, Y. Hua, G. Shao, J. Jin, Q. Shao, Economical and green synthesis of bagasse-derived fluorescent carbon dots for biomedical applications. Nanotechnology 25(31), 315702 (2014)

    Article  PubMed  ADS  Google Scholar 

  30. S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. 49(38), 6726–6744 (2010). https://doi.org/10.1002/anie.200906623

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We very much appreciate the preparation of the biological sample by Vo Thi Phuoc at the Biology Department of University of Sciences, Hue University. The author is grateful to Le Vu Truong Son at Da Nang University for optical measurements.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Ngo Khoa Quang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This research used the available biological material and followed the law and the national ethical guidelines of Vietnam (Vietnam Ministry of Health, number 4259/QĐ-BYT).

Consent for publication

Not Applicable.

Informed consent

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quang, N.K. Sensing of Fe3+ ions and fluorescent bioimaging probes utilizing calabura fruit-derived carbon nanoparticles. MRS Advances (2024). https://doi.org/10.1557/s43580-024-00781-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43580-024-00781-9

Navigation