Skip to main content
Log in

Development of 300–400 °C grown diamond for semiconductor devices thermal management

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

The increasing power demands of electronic applications, including 5G/6G, have made thermal management crucial. Joule heating in the device channel due to higher power leads to performance degradation and early failure. To address this, enhancing heat transfer using thermally conductive materials like diamond is important. Diamond integration onto the device’s top, near the channel, can be achieved through direct chemical vapor deposition. We chose a device-first approach to overcome fabrication challenges, as post-fabrication diamond growth at normal temperatures (> 650 °C) risks gate dielectric failure and higher leakage current. Instead, we developed a < 400 °C growth technique. The original gas mixture (H2 and CH4) at temperatures < 500 °C resulted in carbon deposits with low sp3 incorporation. We successfully achieved high-quality crystalline diamond growth at 400 °C by introducing oxygen species. Raman measurements of the < 400 °C grown diamond showed a strong sp3 peak with a small FWHM (~ 6 cm−1) and a negligible sp2 peak, similar to > 650 °C growth.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data generated during this study is available upon request from the corresponding author.

References

  1. M. Malakoutian, M.A. Laurent, S. Chowdhury, A study on the growth window of polycrystalline diamond on Si3N4-coated N-polar GaN. Crystals 9(10), 1–14 (2019). https://doi.org/10.3390/cryst9100498

    Article  CAS  Google Scholar 

  2. M.A. Laurent, M. Malakoutian, S. Chowdhury, A study on the nucleation and MPCVD growth of thin, dense, and contiguous nanocrystalline diamond films on bare and Si3N4-coated N-polar GaN. Semicond. Sci. Technol. 35(1), 015003 (2020). https://doi.org/10.1088/1361-6641/ab4f16

    Article  ADS  CAS  Google Scholar 

  3. M. Malakoutian et al., Record-low thermal boundary resistance between diamond and GaN-on-SiC for Enabling radiofrequency device cooling. ACS Appl. Mater. Interfaces 13(50), 60553–60560 (2021). https://doi.org/10.1021/acsami.1c13833

    Article  CAS  PubMed  Google Scholar 

  4. H. Song, J. Liu, B. Liu, J. Wu, H.M. Cheng, F. Kang, Two-dimensional materials for thermal management applications. Joule 2(3), 442–463 (2018). https://doi.org/10.1016/j.joule.2018.01.006

    Article  CAS  Google Scholar 

  5. M. Malakoutian, C. Ren, K. Woo, H. Li, S. Chowdhury, Development of polycrystalline diamond compatible with the latest N-polar GaN mm-wave technology. Cryst. Growth Des. 21(5), 2624–2632 (2021). https://doi.org/10.1021/acs.cgd.0c01319

    Article  CAS  Google Scholar 

  6. C. Ren, M. Malakoutian, S. Li, B. Ercan, S. Chowdhury, Demonstration of monolithic polycrystalline diamond-GaN complementary FET technology for high-temperature applications. ACS Appl. Electron. Mater. 3(10), 4418–4423 (2021). https://doi.org/10.1021/acsaelm.1c00571

    Article  CAS  Google Scholar 

  7. M. Malakoutian et al. (2021) Diamond Integration on GaN for Channel Temperature Reduction. In: 2021 IEEE 8th Work Wide Bandgap Power Devices Appl. WiPDA 2021 - Proc. 70–74, 2021, https://doi.org/10.1109/WiPDA49284.2021.9645133.

  8. Y. Muranaka, H. Yamashita, H. Miyadera, Characterization of diamond films synthesized in the microwave plasmas of CO/H2 and CO/O2/H2 systems at low temperatures (403–1023 K). J. Appl. Phys. 69(12), 8145–8153 (1991). https://doi.org/10.1063/1.347468

    Article  ADS  CAS  Google Scholar 

  9. J. Stiegler, T. Lang, M. Nygård-Ferguson, Y. Von Kaenel, E. Blank, Low temperature limits of diamond film growth by microwave plasma-assisted CVD. Diam. Relat. Mater. 5(3–5), 226–230 (1996). https://doi.org/10.1016/0925-9635(95)00349-5

    Article  ADS  CAS  Google Scholar 

  10. X. Xiao, J. Birrell, J.E. Gerbi, O. Auciello, J.A. Carlisle, Low temperature growth of ultrananocrystalline diamond. J. Appl. Phys. 96(4), 2232–2239 (2004). https://doi.org/10.1063/1.1769609

    Article  ADS  CAS  Google Scholar 

  11. T.G. McCauley, D.M. Gruen, A.R. Krauss, Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma. Appl. Phys. Lett. 73(12), 1646–1648 (1998). https://doi.org/10.1063/1.122233

    Article  ADS  CAS  Google Scholar 

  12. Y. Liou, R. Weimer, D. Knight, R. Messier, Effect of oxygen in diamond deposition at low substrate temperatures. Appl. Phys. Lett. 56(5), 437–439 (1990). https://doi.org/10.1063/1.102758

    Article  ADS  CAS  Google Scholar 

  13. Y. Liou, A. Inspektor, R. Weimer, D. Knight, R. Messier, The effect of oxygen in diamond deposition by microwave plasma enhanced chemical vapor deposition. J. Mater. Res. 5(11), 2305–2312 (1990). https://doi.org/10.1557/JMR.1990.2305

    Article  ADS  CAS  Google Scholar 

  14. Y. Liou, A. Inspektor, R. Weimer, R. Messier, Low-temperature diamond deposition by microwave plasma-enhanced chemical vapor deposition. Appl. Phys. Lett. 55(7), 631–633 (1989). https://doi.org/10.1063/1.101807

    Article  ADS  CAS  Google Scholar 

  15. S. Keller et al., Metalorganic chemical vapor deposition of high mobility AlGaN/GaN heterostructures. J. Appl. Phys. 86(10), 5850–5857 (1999). https://doi.org/10.1063/1.371602

    Article  ADS  CAS  Google Scholar 

  16. S. Keller et al., Recent progress in metal-organic chemical vapor deposition of (0001¯) N-polar group-III nitrides. Semicond. Sci. Technol. (2014). https://doi.org/10.1088/0268-1242/29/11/113001

    Article  Google Scholar 

  17. H.A. Girard et al., Electrostatic grafting of diamond nanoparticles: a versatile route to nanocrystalline diamond thin films. ACS Appl. Mater. Interfaces 1(12), 2738–2746 (2009). https://doi.org/10.1021/am900458g

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by the Semiconductor Research Corporation (SRC) under the JUMP program.

Author information

Authors and Affiliations

Authors

Contributions

SC and MM: conceived the topic discussed in this paper; RS, KW and MM: prepared the samples for diamond growth and MM: synthesized diamond; MM: performed the experiments and the microscopic study; KW: studied the samples using Raman spectroscopy; MM and SC: designed the experiments and conceptualized the manuscript; MM: primarily wrote the main manuscript text; SC: modified the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Mohamadali Malakoutian.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakoutian, M., Soman, R., Woo, K. et al. Development of 300–400 °C grown diamond for semiconductor devices thermal management. MRS Advances 9, 7–11 (2024). https://doi.org/10.1557/s43580-023-00677-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00677-0

Navigation