Skip to main content
Log in

Examine the optical properties of oxide/ultra-thin silver/oxide sandwich structures

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

This work calculated the transmittance spectra in the 300–1200 nm wavelength range of six different sandwich structures on glass, comprising typical transparent conductive oxides with an ultra-thin layer of silver at 6 and 7 nm in the middle. Further analyses returned contour maps of average optical transmittances in 300–1200 and 400–800 nm wavelength ranges along the thicknesses of the top and bottom oxides in the 0–100 nm range with a step size of 5 nm. The simulation also provides the optimum designs and their corresponding transmittance spectra for each sandwich structure. Among tested structure, Glass/TiO2/Ag/AZO exhibited the highest average transmittance of 90.8% in the 400–800 nm range, while Glass/TiO2/Ag/SnO2 demonstrated the highest average transmittance of 83.3% in the 300–1200 nm range. These structures, along with Glass/SnO2/Ag/SnO2, are found to have good optical performance and could replace ITO in solar-cell and display applications, theoretically.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information file.

References

  1. D. Angmo, F.C. Krebs, Flexible ITO-free polymer solar cells. J. Appl. Polym. Sci. 129(1), 1–14 (2013)

    Article  CAS  Google Scholar 

  2. R. Pandey, S. Yuldashev, H.D. Nguyen, H.C. Jeon, T.W. Kang, Fabrication of aluminum doped zinc oxide (AZO) transparent conductive oxide by ultrasonic spray pyrolysis. Curr. Appl. Phys. 12, S56–S58 (2012)

    Article  Google Scholar 

  3. M.F. Al-Kuhaili, Co-sputtered tantalum-doped tin oxide thin films for transparent conducting applications. Mater. Chem. Phys. 257, 123749 (2021)

    Article  CAS  Google Scholar 

  4. N.M. Nguyen, M.Q. Luu, M.H. Nguyen, D.T. Nguyen, V.D. Bui, T.T. Truong, T. Nguyen-Tran, Synthesis of tantalum-doped tin oxide thin films by magnetron sputtering for photovoltaic applications. J. Electron. Mater. 46, 3667–3673 (2017)

    Article  CAS  Google Scholar 

  5. N. Ren, J. Zhu, S. Ban, Highly transparent conductive ITO/Ag/ITO trilayer films deposited by RF sputtering at room temperature. AIP Adv. 7(5), 055009 (2017)

    Article  Google Scholar 

  6. W. Yang, Y. Gong, C.Y. Yao, M. Shrestha, Y. Jia, Z. Qiu, W. Li, A fully transparent, flexible PEDOT: PSS–ITO–Ag–ITO based microelectrode array for ECoG recording. Lab Chip 21(6), 1096–1108 (2021)

    Article  CAS  Google Scholar 

  7. T. Tran, Y. Kim, N. Baule, M. Shrestha, B. Zheng, K. Wang, Q.H. Fan, Single-beam ion source enhanced growth of transparent conductive thin films. J. Phys. D: Appl. Phys. 55(39), 395202 (2022)

    Article  Google Scholar 

  8. Fan, Q. H., Schuelke, T., Haubold, L., & Petzold, M. (2021). U.S. Patent No. 11,049,697. Washington, DC: U.S. Patent and Trademark Office.

  9. T. Tran, X. Wang, M. Shrestha, K. Wang, Q.H. Fan, Ultra-thin silver films grown by sputtering with a soft ion beam-treated intermediate layer. J. Phys. D Appl. Phys. 56, 365501 (2023)

    Article  Google Scholar 

  10. T. Tran, M. Shrestha, N. Baule, K. Wang, Q.H. Fan, Stable ultra-thin silver films grown by soft ion beam-enhanced sputtering with an aluminum cap layer. ACS Appl. Mater. Interfaces 15(24), 29102–29109 (2023)

    Article  CAS  Google Scholar 

  11. Tran, T., Shrestha, M., & Fan, Q.H., Highly transparent and conductive ITO/Ultra-thin Silver/ITO/glass sandwich structure for optical coatings and optoelectronic devices. MRS Communications, (Under review).

  12. Byrnes, S. J. (2016). Multilayer optical calculations. arXiv preprint arXiv:1603.02720.

  13. C.C. Katsidis, D.I. Siapkas, General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41(19), 3978–3987 (2002)

    Article  Google Scholar 

  14. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. Josa 55(10), 1205–1209 (1965)

    Article  CAS  Google Scholar 

  15. T.A. Konig, P.A. Ledin, J. Kerszulis, M.A. Mahmoud, M.A. El-Sayed, J.R. Reynolds, V.V. Tsukruk, Electrically tunable plasmonic behavior of nanocube–polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8(6), 6182–6192 (2014)

    Article  CAS  Google Scholar 

  16. S. Sarkar, V. Gupta, M. Kumar, J. Schubert, P.T. Probst, J. Joseph, T.A. König, Hybridized guided-mode resonances via colloidal plasmonic self-assembled grating. ACS Appl. Mater. Interfaces 11(14), 13752–13760 (2019)

    Article  CAS  Google Scholar 

  17. S. Manzoor, J. Häusele, K.A. Bush, A.F. Palmstrom, J. Carpenter, J.Y. Zhengshan, Z.C. Holman, Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Optics Express 26(21), 27441–27460 (2018)

    Article  CAS  Google Scholar 

  18. A.D. Rakić, A.B. Djurišić, J.M. Elazar, M.L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37(22), 5271–5283 (1998)

    Article  Google Scholar 

  19. R.E. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, D. Lane, Optical design and fabrication of fully sputtered CdTe/CdS solar cells. J. Phys.: Conf. Ser. 286(1), 012038 (2011)

    Google Scholar 

  20. B. Thestrup, J. Schou, Transparent conducting AZO and ITO films produced by pulsed laser ablation at 355 nm. Appl. Phys. A 69, S807–S810 (1999)

    Article  CAS  Google Scholar 

  21. Pern, F. J., Noufi, R., Li, X., DeHart, C., & To, B. (2008, May). Damp-heat induced degradation of transparent conducting oxides for thin-film solar cells. In 2008 33rd IEEE photovoltaic specialists conference. IEEE, pp. 1–6

  22. K.J. Geretschläger, G.M. Wallner, I. Hintersteiner, W. Buchberger, Damp heat aging behavior of a polyamide-based backsheet for photovoltaic modules. J. Solar Energy Eng. 138(4), 1 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the National Science Foundation award #1917577.

Funding

This study was funded by National Science Foundation, 1917577, Thanh Tran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Tran.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 328 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T., Fan, Q.H. Examine the optical properties of oxide/ultra-thin silver/oxide sandwich structures. MRS Advances 8, 1017–1021 (2023). https://doi.org/10.1557/s43580-023-00624-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-023-00624-z

Navigation