Skip to main content
Log in

Parasitic side channel formation due to ion implantation isolation of GaN HEMT

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Low-dose high-energy ion implantation is effective for isolating GaN high-electron-mobility transistors (HEMTs). However, lateral penetration of implanted ions induces damages at sides of AlGaN/AlN/GaN HEMTs and causes parasitic channel formation. By comparing ion implantation isolated HEMTs with varied widths, the parasitic channel behavior is characterized: the parasitic channel shows low on-state conductance, reduced gate current, and more positive threshold voltage compared to the active HEMT channel. The high N ion implantation energy for HEMT isolation was up to 375 keV, and the effective widths of HEMTs are narrowed by ~ 0.5 µm. The electrical characteristics of the parasitic channel are theoretically understood by considering ionization of point defect generated in the AlGaN/AlN/GaN heterostructures.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S.J. Pearton, C.B. Vartuli, J.C. Zolper, C. Yuan, R.A. Stall, Ion implantation doping and isolation of GaN. Appl. Phys. Lett. 67, 1435 (1995). https://doi.org/10.1063/1.114518

    Article  CAS  Google Scholar 

  2. S.O. Kucheyev, J.S. Williams, J. Zou, C. Jagadish, G. Li, Ion implantation into GaN. Mater. Sci. Eng. R 33, 51–107 (2001). https://doi.org/10.1016/S0168-583X(00)00672-8

    Article  Google Scholar 

  3. A.N. Tallarico et al., Gate reliability of p-GaN HEMT with gate metal retraction. IEEE Trans. Electron Devices 66(11), 4829–4835 (2019). https://doi.org/10.1109/TED.2019.2938598

    Article  CAS  Google Scholar 

  4. H. Yu et al., Leakage mechanism in ion implantation isolated AlGaN/GaN heterostructures. J. Appl. Phys. (2022). https://doi.org/10.1063/5.0076243

    Article  Google Scholar 

  5. G. Hanington et al., P/He ion implant isolation technology for AlGaN/GaN HFETs. Electron. Lett. 34(2), 193–195 (1998). https://doi.org/10.1049/el:19980091

    Article  CAS  Google Scholar 

  6. T. Oishi et al., Highly resistive GaN layers formed by ion implantation of Zn along the c axis. J. Appl. Phys. 94(3), 1662–1666 (2003). https://doi.org/10.1063/1.1590412

    Article  CAS  Google Scholar 

  7. J.Y. Shiu et al., Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs. IEEE Electron Device Lett. 28(6), 476–478 (2007). https://doi.org/10.1109/LED.2007.896904

    Article  CAS  Google Scholar 

  8. H. Umeda, T. Takizawa, Y. Anda, T. Ueda, T. Tanaka, High-voltage isolation technique using fe ion implantation for monolithic integration of AlGaN/GaN transistors. IEEE Trans. Electron Devices 60(2), 771–775 (2013). https://doi.org/10.1109/TED.2012.2230264

    Article  CAS  Google Scholar 

  9. A. Taube et al., Ion implantation for isolation of AlGaN/GaN HEMTs using C or Al. Phys. Status Solidi A Appl. Mater. Sci. 212(5), 1162–1169 (2015). https://doi.org/10.1002/pssa.201431724

    Article  CAS  Google Scholar 

  10. A.Y. Polyakov, S.J. Pearton, P. Frenzer, F. Ren, L. Liu, J. Kim, Radiation effects in GaN materials and devices. J. Mater. Chem. C Mater. 1(5), 877–887 (2013). https://doi.org/10.1039/c2tc00039c

    Article  CAS  Google Scholar 

  11. S.R. Challa et al., Understanding high-energy 75-MeV sulfur-ion irradiation-induced degradation in GaN-based heterostructures: the role of the GaN channel layer. IEEE Trans. Electron Devices 68(1), 24–28 (2021). https://doi.org/10.1109/TED.2020.3037259

    Article  CAS  Google Scholar 

  12. N.A. Vega et al., Outstanding reliability of heavy-ion-irradiated AlInN/GaN on silicon HFETs. IEEE Trans. Nucl. Sci. 66(12), 2417–2421 (2019). https://doi.org/10.1109/TNS.2019.2954216

    Article  CAS  Google Scholar 

  13. G. Sonia et al., Proton and heavy ion irradiation effects on AlGaN/GaN HFET devices. IEEE Trans. Nucl. Sci. 53(6), 3661–3666 (2006). https://doi.org/10.1109/TNS.2006.885006

    Article  CAS  Google Scholar 

  14. U. Peralagu et al., CMOS-compatible GaN-based devices on 200mm-Si for RF applications: integration and performance. Int. Electron Devices Meeting IEDM (2019). https://doi.org/10.1109/IEDM19573.2019.8993582

    Article  Google Scholar 

  15. H. Yu et al., Surface state spectrum of AlGaN/AlN/GaN extracted from static equilibrium electrostatics. IEEE Trans. Electron Devices 68(11), 5559–5564 (2021). https://doi.org/10.1109/TED.2021.3115086

    Article  CAS  Google Scholar 

  16. B. Parvais et al., Advanced transistors for high frequency applications. ECS Trans. 97(5), 27–38 (2020). https://doi.org/10.1149/09705.0027ecst

    Article  CAS  Google Scholar 

  17. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—the stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. B 268(11–12), 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  CAS  Google Scholar 

  18. H. Yu et al., Thermal budget increased alloy disorder scattering of 2DEG in III-N heterostructures. Appl. Phys. Lett. (2022). https://doi.org/10.1063/5.0093839

    Article  Google Scholar 

  19. K. Lee, M.S. Shur, T.J. Drummond, H. Morkoç, Low field mobility of 2-d electron gas in modulation doped Al xGa1-xAs/GaAs layers. J. Appl. Phys. 54(11), 6432–6438 (1983). https://doi.org/10.1063/1.331922

    Article  CAS  Google Scholar 

  20. S. Turuvekere, D.S. Rawal, A. Dasgupta, N. Dasgupta, Evidence of Fowler-Nordheim tunneling in gate leakage current of AlGaN/GaN HEMTs at room temperature. IEEE Trans. Electron Devices. 61(12), 4291–4294 (2014). https://doi.org/10.1109/TED.2014.2361436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yu.

Ethics declarations

Conflict of interest

No funds, grants, or other support were received.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, H., Peralagu, U., Alian, A. et al. Parasitic side channel formation due to ion implantation isolation of GaN HEMT. MRS Advances 7, 1274–1278 (2022). https://doi.org/10.1557/s43580-022-00453-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00453-6

Navigation