Skip to main content

Advertisement

Log in

Performance comparison of nitrile-based liquid electrolytes on bifacial dye-sensitized solar cells under low-concentrated light

  • Original Paper
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cell (DSSC) has low power output and efficiency. Even though the low-concentrated light can increase the \({P}_{\text{OUT}}\) and power conversion efficiency (PCE) of DSSC, the effect of increase in the cell temperature, particularly electrolyte evaporation, becomes a major concern. In this study, we compared and investigated the performance of acetonitrile (AN-50), propionitrile (PN-50), and 3-metoxy propionitrile (Z-100) as nitrile-based electrolyte under low-concentrated light. The results showed 4–8 times increase in \({J}_{\text{SC}}\) and \({P}_{\text{OUT}}\) in all electrolytes. AN-50 demonstrated an improved performance under influence of 2 cm distance concave mirror concentrated light with the highest \({J}_{\text{SC}}\) = 74.21 mA/cm2, \({P}_{\text{OUT}}\) = 24.53 mW/cm2, and \(\eta \) = 7.99%. However, the performance of cell with AN-50 and PN-50 started to degrade within 3 h of measurement. In contrast, Z-100 displayed performance stability during 4 days measurement even with the lowest \({J}_{\text{SC}}\)= 49.98 mA/cm2, \({P}_{\text{OUT}}\) = 19.50 mW/cm2, and \(\eta \) = 6.35%.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737–740 (1991). https://doi.org/10.1038/353737a0

    Article  Google Scholar 

  2. H. Seo, M.K. Son, S. Hashimoto, T. Takasaki, N. Itagaki, K. Koga, M. Shiratani, Surface modification of polymer counter electrode for low-cost dye-sensitized solar cells. Electrochim. Acta 210, 880–887 (2016). https://doi.org/10.1016/j.electacta.2016.06.020

    Article  CAS  Google Scholar 

  3. S. Mozaffari, M.R. Nateghi, M.B. Zarandi, An overview of the challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 71, 675–686 (2017). https://doi.org/10.1016/j.rser.2016.12.096

    Article  CAS  Google Scholar 

  4. F.L. Chawarambwa, T.E. Putri, P. Attri, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Highly efficient and transparent counter electrode for application in bifacial solar cells. Chem. Phys. Lett. 768, 138369 (2021). https://doi.org/10.1016/j.cplett.2021.138369

    Article  CAS  Google Scholar 

  5. G. Bousrez, O. Renier, B. Adranno, V. Smetana, A.V. Mudring, Ionic liquid-based dye-sensitized solar cells-insights into electrolyte and redox mediator design. ACS Sustain. Chem. Eng. 9, 8107–8114 (2021). https://doi.org/10.1021/acssuschemeng.1c01057

    Article  CAS  Google Scholar 

  6. J. Yum, E. Baranoff, S. Wenger, M.K. Nazeeruddin, M. Gratzel, Panchromatic engineering for dye-sensitized solar cells. Energy Environ. Sci. 4, 842–857 (2011). https://doi.org/10.1039/C0EE00536C

    Article  CAS  Google Scholar 

  7. I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzidis, All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012). https://doi.org/10.1038/nature11067

    Article  CAS  Google Scholar 

  8. F.L. Chawarambwa, T.E. Putri, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Synthesis of Yb3+/Ho3+ Co-doped Y2O3 nanoparticles and its application to dye sensitized solar cells. J. Mol. Struct. 1228, 129479 (2021). https://doi.org/10.1016/j.molstruc.2020.129479

    Article  CAS  Google Scholar 

  9. G. Xue, Y. Guo, T. Yu, J. Guan, J. Zhang, J. Liu, Z. Zuo, Degradation mechanisms investigation for long-term thermal stability of dye-sensitized solar cells. Int. J. Electrochem. Sci. 7, 1496–1511 (2012)

    CAS  Google Scholar 

  10. T.E. Putri, F.L. Chawarambwa, H. Seo, M.K. Son, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Effect of activated carbon counter electrode on bifacial dye sensitized solar cells (DSSCs). Mater. Sci. Forum 1016, 863–868 (2021). https://doi.org/10.4028/www.scientific.net/MSF.1016.863

    Article  Google Scholar 

  11. F.L. Chawarambwa, T.E. Putri, M.K. Son, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Graphene-Si3N4 nanocomposite blended polymer counter electrode for low-cost dye-sensitized solar cells. Chem. Phys. Lett. 758, 137920 (2020). https://doi.org/10.1016/j.cplett.2020.137920

    Article  CAS  Google Scholar 

  12. A. Ustaoglu, C. Kandilli, M. Cakmak, H. Torlaklı, Experimental and economical performance investigation of V-trough concentrator with different reflectance characteristic in photovoltaic applications. J. Clean. Prod. 272, 123072 (2020). https://doi.org/10.1016/j.jclepro.2020.123072

    Article  Google Scholar 

  13. P. Selvaraj, H. Baig, T.K. Mallick, J. Siviter, A. Montecucco, W. Li, M. Paul, T. Sweet, M. Gao, A.R. Knox, S. Sundaram, Enhancing the efficiency of transparent dye-sensitized solar cells using concentrated light. Sol. Energy Mater. Sol. Cells 175, 29–34 (2018). https://doi.org/10.1016/j.solmat.2017.10.006

    Article  CAS  Google Scholar 

  14. F.L. Chawarambwa, T.E. Putri, P. Attri, K. Kamataki, N. Itagaki, K. Koga, M. Shiratani, Effect of concentrated light on the performance and stability of a quasi-solid electrolyte in dye-sensitized solar cells. Chem. Phys. Lett. 781, 138986 (2021). https://doi.org/10.1016/j.cplett.2021.138986

    Article  CAS  Google Scholar 

  15. J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, G. Luo, Electrolytes in dye-sensitized solar cells. Chem. Rev. 115(5), 2136–2173 (2015). https://doi.org/10.1021/cr400675m

    Article  CAS  Google Scholar 

  16. S.M.M. Yusof, W.Z.N. Yahya, Binary ionic electrolyte for dye sensitized solar cells. Proced. Eng. 148, 100–105 (2016). https://doi.org/10.1016/j.proeng.2016.06.453

    Article  CAS  Google Scholar 

  17. Y. Fang, P. Ma, H. Cheng, G. Tan, J. Wu, J. Zheng, X. Zhou, S. Fang, Y. Dai, Y. Lin, Synthesis of low-viscosity ionic liquids for application in dye-sensitized solar cells. Chem. Asian J. 14, 4201–4206 (2019). https://doi.org/10.1002/asia.201901130

    Article  CAS  Google Scholar 

  18. M.I. Asghar, K. Miettunen, J. Halme, P. Vahermaa, M. Toivola, K. Aitola, P. Lund, Review of stability for advanced dye solar cells. Energy Environ. Sci. 3, 418–426 (2010). https://doi.org/10.1039/B922801B

    Article  CAS  Google Scholar 

  19. H. Iftikhar, G.G. Sonai, S.H. Hashmi, A.F. Nogueira, P.D. Lund, Progress on electrolytes development in dye-sensitized solar cells. Materials 12(12), 1998 (2019). https://doi.org/10.3390/ma12121998

    Article  CAS  Google Scholar 

  20. O. Langmar, C.R. Ganivet, T. Scharl, G. Torre, T. Torres, D.C. Costa, D.M. Guldi, Modifying the semiconductor/electrolyte interface in CuO p-type dye-sensitized solar cells: optimization of iodide/triiodide-based electrolytes. ACS Appl. Energy Mater. 1, 6388–6400 (2018). https://doi.org/10.1021/acsaem.8b01370

    Article  CAS  Google Scholar 

  21. H. Fang, J. Ma, M.J. Wilhelm, B.G. DeLacy, H.L. Dai, influence of solvent on dye-sensitized solar cell efficiency: what is so special about acetonitrile? Part. Part. Syst. Charact. 38, 2000220 (2021). https://doi.org/10.1002/ppsc.202000220

    Article  CAS  Google Scholar 

  22. S. Venkatesan, N. Hidayati, I. Liu, Y.L. Lee, Highly efficient gel-state dye-sensitized solar cells prepared using propionitrile and poly(vinylidene fluoride-co-hexafluoropropylene). J. Power Sources 336, 385–390 (2016). https://doi.org/10.1016/j.jpowsour.2016.11.014

    Article  CAS  Google Scholar 

  23. R. Harikisun, H. Desilvestro, Long-term stability of dye solar cells. Sol. Energy 85, 1179–1188 (2011)

    Article  CAS  Google Scholar 

  24. S.P. Mohanty, P. Bhargava, Impact of electrolytes based on different solvents on the long term stability of dye sensitized solar cells. Electrochim. Acta 168, 111–115 (2015). https://doi.org/10.1016/j.electacta.2015.03.202

    Article  CAS  Google Scholar 

  25. S. Venkatesan, S.V. Su, S.C. Kao, H. Teng, Y.L. Lee, Stability improvement of gel-state dye-sensitized solar cells by utilization the co-solvent effect of propionitrile/acetonitrile and 3- methoxypropionitrile/acetonitrile with poly(acrylonitrile-co-vinylacetate). J. Power Sources 274, 506–511 (2015)

    Article  CAS  Google Scholar 

  26. S. Radhakrishnan, L.V. Munukutla, A. Htun, A.M. Kannan, The dye sensitized solar cell stability and performance study using different electrolytes. MRS Online Proc. Libr. 841, 1322 (2011). https://doi.org/10.1557/opl.2011.1300

    Article  CAS  Google Scholar 

  27. S. Sarwar, M. Lee, S. Park, T.T. Dao, A. Ullah, S. Hong, C.H. Han, Transformation of a liquid electrolyte to a gel inside dye sensitized solar cells for better stability and performance. Thin Solid Films 704, 138024 (2020). https://doi.org/10.1016/j.tsf.2020.138024

    Article  CAS  Google Scholar 

  28. M.H. Buraidah, S. Shah, L.P. Teo, F.I. Chowdury, M.A. Careem, I. Albison, B.E. Mellader, A.K. Arof, High efficiecnt dye sensitized solar cells using phthaloylchitosan based gel polymer electrolytes. Electrochim. Acta 245, 846–853 (2017). https://doi.org/10.1016/j.electacta.2017.06.011

    Article  CAS  Google Scholar 

  29. F.I. Chowdhury, M.H. Buraidah, A.K. Arof, B.E. Mellander, I.M. Noor, Impact of tetrabutylammonium, iodide and triiodide ions conductivity in polyacrylonitrile based electrolyte on DSSC performance. Sol. Energy 196, 379–388 (2020). https://doi.org/10.1016/j.solener.2019.12.033

    Article  CAS  Google Scholar 

  30. A. Hauch, A. Georg, Diffusion in the electrolyte and charge transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim. Acta 46, 3457–3466 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TEP performed data collection under the supervision of Kazunori Koga, NI, MS, P.A., assisted sample preparation on the supervision of Kunihiro Kamataki and FLC, the manuscript was written by TEP with input from other authors.

Corresponding author

Correspondence to Tika E. Putri.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 208 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putri, T.E., Chawarambwa, F.L., Attri, P. et al. Performance comparison of nitrile-based liquid electrolytes on bifacial dye-sensitized solar cells under low-concentrated light. MRS Advances 7, 427–432 (2022). https://doi.org/10.1557/s43580-022-00270-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43580-022-00270-x

Navigation