Skip to main content
Log in

Nano-sized polymer-assisted cold sintering and recycling of ceramic composites

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Cold sintering is an emerging technology that significantly reduces sintering temperatures by approximately an order of magnitude, down to about 100–200°C. This reduction of processing temperature enables the co-sintering and integration of dissimilar materials, such as ceramics and polymers, into unprecedented composites, where the low-energy consumption densification provides an opportunity for recycling. Here, we cold sintered barium titanate (BaTiO3)-polytetrafluoroethylene (PTFE) ceramic-polymer composites, demonstrating that nano-sized PTFE polymer powders facilitate co-sintering and enable the recycling of ceramic composites. This approach offers an opportunity for reusing and re-processing ceramic components, thereby promoting sustainability through waste reduction and energy savings.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. X. Hao, A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3, 1330001 (2013)

    Article  Google Scholar 

  2. M. Acosta et al., BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev. 4, 041305 (2017)

    Article  Google Scholar 

  3. C. Pan et al., Fabrication and characterization of AlN/PTFE composites with low dielectric constant and high thermal stability for electronic packaging. Mater. Sci. Mater. Electron. 27, 286–292 (2016)

    Article  CAS  Google Scholar 

  4. Y. Bai et al., High-dielectric-constant ceramic-powder polymer composites. Appl. Phys. Lett. 76, 3804–3806 (2000)

    Article  CAS  Google Scholar 

  5. S. Schwarzer, A. Roosen, Tape casting of piezo ceramic/polymer composites. J. Eur. Ceram. Soc. 19, 1007–1010 (1999)

    Article  CAS  Google Scholar 

  6. S.-M. Chang et al., Optimization of piezoelectric polymer composites and 3D printing parameters for flexible tactile sensors. Addit. Manuf. 67, 103470 (2023)

    CAS  Google Scholar 

  7. J. Guo et al., Cold sintering process of composites: bridging the processing temperature gap of ceramic and polymer materials. Adv. Funct. Mater. 26, 7115–7121 (2016)

    Article  CAS  Google Scholar 

  8. M.N. Rahaman, Sintering of ceramics (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  9. F. Andreola et al., Recycling of industrial wastes in ceramic manufacturing: state of art and glass case studies. Ceram. Int. 42, 13333–13338 (2016)

    Article  CAS  Google Scholar 

  10. M. Pelino, Recycling of zinc-hydrometallurgy wastes in glass and glass ceramic materials. Waste Manag. 20, 561–568 (2000)

    Article  CAS  Google Scholar 

  11. C. Manière et al., A spark plasma sintering densification modeling approach: from polymer, metals to ceramics. J. Mater. Sci. 53, 7869–7876 (2018)

    Article  Google Scholar 

  12. A. Ndayishimiye et al., Hydrothermal sintering for densification of silica. Evidence for the role of water. J. Eur. Ceram. Soc. 38, 1860–1870 (2018)

    Article  CAS  Google Scholar 

  13. C. Pithan, D. Hennings, R. Waser, Progress in the synthesis of nanocrystalline BaTiO3 powders for MLCC. Int. J. Appl. Ceram. 2, 1–14 (2005)

    Article  CAS  Google Scholar 

  14. S.H. Wemple, M. Didomenico Jr., I. Camlibel, Dielectric and optical properties of melt-grown BaTiO3. J. Phys. Chem. Solids 29, 1797–1803 (1968)

    Article  Google Scholar 

  15. H. Takahashi et al., Piezoelectric properties of BaTiO3 ceramics with high performance fabricated by microwave sintering. Jpn. J. Appl. Phys. 45, 7405 (2006)

    Article  CAS  Google Scholar 

  16. T. Sada et al., High permittivity BaTiO3 and BaTiO3-polymer nanocomposites enabled by cold sintering with a new transient chemistry: Ba(OH)2⋅8H2O. J. Eur. Ceram. Soc. 41, 409–417 (2021)

    Article  CAS  Google Scholar 

  17. Z.-M. Dang et al., Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Adv. Funct. Mater. 18, 1509–1517 (2008)

    Article  CAS  Google Scholar 

  18. D. Völtzke et al., Surface modification of pre-sintered BaTiO3 particles. Mater. Chem. Phys. 73, 274–280 (2002)

    Article  Google Scholar 

  19. T. Sada et al., Highly reliable BaTiO3-polyphenylene oxide nanocomposite dielectrics via cold sintering. Adv. Mater. Interfaces 8, 2100963 (2021)

    Article  CAS  Google Scholar 

  20. M.N. Almadhoun, U.S. Bhansali, H.N. Alshareef, Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO3 nanoparticles for energy storage applications. J. Mater. Chem. 22, 11196–11200 (2012)

    Article  CAS  Google Scholar 

  21. D.A. Purser, Recent developments in understanding the toxicity of PTFE thermal decomposition products. Fire Mater. 16, 67–75 (1992)

    Article  CAS  Google Scholar 

  22. O. Pekonen et al., Numerical testing of dielectric mixing rules by FDTD method. J. Electromagn. Waves Appl. 13, 67–87 (1999)

    Article  Google Scholar 

  23. V. Buscaglia, C.A. Randall, Size and scaling effects in barium titanate: an overview. J. Eur. Ceram. Soc. 40, 3744–3758 (2020)

    Article  CAS  Google Scholar 

  24. T.-T. Fang, H.-L. Hsieh, F.-S. Shiau, Effects of pore morphology and grain size on the dielectric properties and tetragonal-cubic phase transition of high-purity barium titanate. J. Am. Ceram. Soc. 76, 1205–1211 (1993)

    Article  CAS  Google Scholar 

  25. R.P.S.M. Lobo, N.D.S. Mohallem, R.L. Moreira, Grain-size effects on diffuse phase transitions of sol–gel prepared barium titanate ceramics. J. Am. Ceram. Soc. 78, 1343–1346 (1995)

    Article  CAS  Google Scholar 

  26. M. Wintersgill et al., The temperature variation of the dielectric constant of ‘pure’ CaF2, SrF2, BaF2, and MgO. J. Appl. Phys. 50, 8259–8261 (1979)

    Article  CAS  Google Scholar 

  27. Ch. Rayssi et al., Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1xCo4x/3O3 (0≤ x ≤ 0.1). RSC Adv. 8, 17139–17150 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. K. Yang et al., Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem. Mater. 25, 2327–2338 (2013)

    Article  CAS  Google Scholar 

  29. G. Busca et al., Solid-state and surface spectroscopic characterization of BaTiO3 fine powders. Chem. Mater. 6, 955–961 (1994)

    Article  CAS  Google Scholar 

  30. J. Mihály et al., FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croat. Chem. Acta 79, 497–501 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Science Foundation FMSG (2134643).

Funding

This work was supported by the National Science Foundation FMSG (2134643).

Author information

Authors and Affiliations

Authors

Contributions

JZ: Conceptualization, Methodology, Formal analysis, Investigation, Visualization, Writing—original draft. EDG: Conceptualization, Writing—review & editing, Supervision, Funding acquisition. HS: Conceptualization, Writing—review & editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Enrique D. Gomez or Hongtao Sun.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 333 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Gomez, E.D. & Sun, H. Nano-sized polymer-assisted cold sintering and recycling of ceramic composites. MRS Communications (2024). https://doi.org/10.1557/s43579-024-00524-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/s43579-024-00524-9

Keywords

Navigation