Skip to main content
Log in

Aggregation behavior and structural properties of Ti3Al nanoparticles

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Molecular dynamic (MD) simulations were used to investigate the aggregation process of Ti3Al nanoparticles (NPs) of varying sizes. The aggregation behavior of Ti3Al NPs can be divided into four stages: stable contact, slow aggregation, fast aggregation, and uniform diffusion. A liquid bridge was formed in aggregation stage between two NPs and disappears in diffusion stage. The different shrinkage ratio reveals that rapid aggregation, melting, and completion of aggregation do not occur simultaneously. Moreover, the sintering neck is less stable for Ti3Al NPs with a radius of 50 Å due to plastic deformation, resulting in a slow aggregation phase.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure. 1
Figure. 2
Figure. 3
Figure. 4

Similar content being viewed by others

Data availability

All data are provided in full in the results section of this paper.

References

  1. P. Chand, S. Vaish, P. Kumar, Phys. B 524, 53 (2017)

    Article  CAS  Google Scholar 

  2. T. Dippong, E.A. Levei, O. Cadar, Nanomaterials 11, 1560 (2021)

    Article  CAS  Google Scholar 

  3. C. Yang, M.Q. Li, Y.G. Liu, J. Alloy. Compd. 854, 157277 (2021)

    Article  CAS  Google Scholar 

  4. Z. Wan, Y. Sun, L. Hu, H. Yu, Mater. Des. 122, 11 (2017)

    Article  CAS  Google Scholar 

  5. Q. Xue, Y.J. Ma, J.F. Lei, R. Yang, C. Wang, J. Mater. Sci. Technol. 34, 2507 (2018)

    Article  CAS  Google Scholar 

  6. S. Chen, Y. Chen, H. Zhang, Y. Tang, J. Wei, W. Sun, J. Nanomater. 2013, 1 (2013)

    Google Scholar 

  7. L.-F. Lai, D.-M. Lu, C.-H. Li, K.-H. Chen, S.-C. Lin, Y.-C. Su, S. Jiang, D.-S. Liu, K.-S. Hsu, J.-M. Lu, M.-H. Lee, and Z. Chen, in 2018 IEEE International Conference on Applied System Invention (ICASI) (IEEE, Chiba, 2018), pp. 1318–1321.

  8. S. Shrestha, B. Wang, P. Dutta, Adv. Coll. Interface. Sci. 279, 102162 (2020)

    Article  CAS  Google Scholar 

  9. Y. Zare, K.Y. Rhee, D. Hui, Compos. B Eng. 122, 41 (2017)

    Article  CAS  Google Scholar 

  10. R.E. Jones, C.R. Weinberger, S.P. Coleman, G. J. Tucker, in Multiscale Materials Modeling for Nanomechanics. ed. by C.R. Weinberger, G.J. Tucker (Springer International Publishing, Cham, 2016), pp.1–52

    Google Scholar 

  11. Z. Noori, M. Panjepour, M. Ahmadian, J. Mater. Res. 30, 1648 (2015)

    Article  CAS  Google Scholar 

  12. R. Wu, X. Zhao, Y. Liu, Mater. Des. 197, 109240 (2021)

    Article  CAS  Google Scholar 

  13. J. Jiang, P. Chen, J. Qiu, W. Sun, S.A. Chizhik, A.A. Makhaniok, G.B. Melnikova, T.A. Kuznetsova, Phys. Chem. Chem. Phys. 23, 11684 (2021)

    Article  CAS  Google Scholar 

  14. J. Jiang, P. Chen, W. Sun, J. Mater. Sci. Technol. 57, 92 (2020)

    Article  CAS  Google Scholar 

  15. Y. Zhang, J. Zhang, J. Mater. Res. 31, 2233 (2016)

    Article  CAS  Google Scholar 

  16. P. Srinoi, Y.-T. Chen, V. Vittur, M. Marquez, T. Lee, Appl. Sci. 8, 1106 (2018)

    Article  Google Scholar 

  17. H. Akbarzadeh, E. Mehrjouei, M. Abbaspour, A.N. Shamkhali, Top Curr Chem (Z) 379, 22 (2021)

    Article  CAS  Google Scholar 

  18. T. Li, J. Li, M. Yan, L. Zhang, C. Fu, Y. Ruan, H. Li, J. Alloy. Compd. 859, 157791 (2021)

    Article  CAS  Google Scholar 

  19. A. Shaw, B. Deb, S. Kabi, A. Ghosh, J Electroceram 34, 20 (2015)

    Article  CAS  Google Scholar 

  20. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  CAS  Google Scholar 

  21. R.R. Zope, Y. Mishin, Phys. Rev. B 68, 024102 (2003)

    Article  Google Scholar 

  22. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 18, 015012 (2009)

    Article  Google Scholar 

  23. A.R. Natarajan, P. Dolin, A. Van der Ven, Acta Mater. 200, 171 (2020)

    Article  CAS  Google Scholar 

  24. A. Stukowski, Modelling Simul. Mater. Sci. Eng. 20, 045021 (2012)

    Article  Google Scholar 

  25. Z.A. Tian, R.S. Liu, K.J. Dong, A.B. Yu, EPL 96, 36001 (2011)

    Article  Google Scholar 

  26. L. Van Sang, V. Van Hoang, N.T. Thuy Hang, Eur. Phys. J. 67, 64 (2013)

    Google Scholar 

  27. P. Song, D. Wen, J. Nanopart. Res. 12, 823 (2010)

    Article  CAS  Google Scholar 

  28. M.A.B. Wassel, L.A. Pérez-Maqueda, E. Gil-Gonzalez, H. Charalambous, A. Perejon, S.K. Jha, J. Okasinski, T. Tsakalakos, Scripta. Mater. 162, 286 (2019)

    Article  CAS  Google Scholar 

  29. Q. Li, M. Wang, Y. Liang, L. Lin, T. Fu, P. Wei, T. Peng, Phys. E 90, 137 (2017)

    Article  CAS  Google Scholar 

  30. M. Yousefi, M.M. Khoie, Eur. Phys. J. D 69, 71 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Project supported by the Guizhou Province Science and Technology Fund, China (Grant Nos. ZK [2021] 051, ZK[2023] 013), the National Natural Science Foundation of China (Grant Nos. 52262021, and 51761004), and Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University (Grant No. 2020-520000-83-01-324061).

Funding

National Natural Science Foundation of China, 52262021, Tinghong Gao,51761004, Tinghong Gao, Industry and Education Combination Innovation Platform of Intelligent Manufacturing and Graduate Joint Training Base at Guizhou University, 2020-520000-83-01-324061, Tinghong Gao, Guizhou Province Science and Technology Fund, China, ZK[2021] 051, Tinghong Gao, [2017] 5788, Tinghong Gao

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the ideation and design of the study. The first draft of the manuscript was written by the first author and perfected by the second author, all of whom commented on the previous versions of the manuscript. For the rest of the work in this article, the contributions of all authors are equal. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tinghong Gao.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 399 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, T., Liu, L., Li, L. et al. Aggregation behavior and structural properties of Ti3Al nanoparticles. MRS Communications 13, 1388–1394 (2023). https://doi.org/10.1557/s43579-023-00472-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00472-w

Keywords

Navigation