Skip to main content

Advertisement

Log in

Construction of CuV2O6-nanostructured electrode material for supercapacitors

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

In the present study, copper vanadate (CuV2O6) was prepared via a simple precipitation route, followed by calcination. The as-prepared electrode material, CuV2O6, was observed to have a surface area of 62 m2 g−1 by the Brunauer–Emmett–Teller analysis. Further, its capacitance behaviour was assessed using cyclic voltammetry, Galvanostatic charge–discharge studies (GCD) and electrochemical impedance spectroscopy. The electroactive CuV2O6 showed a high specific capacitance of 497 F g−1 at 1 Ag−1. Furthermore, long-term cyclic stability of 3000 GCD cycles at 2 Ag−1 with 92.2% of capacitance retention was attained. Hence, CuV2O6 is one of the potential electrode materials for energy storage systems due to its significant properties, such as porous nanostructure and good surface area.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. S. Shaikh, M. Rabinal, Rapid ambient growth of copper sulfide microstructures: binder free electrodes for supercapacitor. J. Energy Storage 28, 101288 (2020)

    Article  Google Scholar 

  2. S. Rajkumar, E. Elanthamilan, T.E. Balaji, A. Sathiyan, N.E. Jafneel, J.P. Merlin, Recovery of copper oxide nanoparticles from waste SIM cards for supercapacitor electrode material. J. Alloy. Compd. 849, 156582 (2020)

    Article  CAS  Google Scholar 

  3. S. Rajkumar, R. Subha, S. Gowri, A. Bella, J.P. Merlin, Enhanced electrochemical performance of aminophenol-modified ZnO as electrode material for supercapacitors. Ionics (2021). https://doi.org/10.1007/s11581-021-04321-5

    Article  Google Scholar 

  4. A.K. Das, N.H. Kim, S.H. Lee, Y. Sohn, J.H. Lee, Facile synthesis of CuCo2O4 composite octahedrons for high performance supercapacitor application. Compos. B Eng. 150, 269 (2018)

    Article  CAS  Google Scholar 

  5. M.D. Angelin, S. Rajkumar, A. Ravichandran, J.P. Merlin, Systematic investigation on the electrochemical performance of Cd-doped ZnO as electrode material for energy storage devices. J. Phys. Chem. Solids (2021). https://doi.org/10.1016/j.jpcs.2021.110486

    Article  Google Scholar 

  6. S. Rajkumar, S. Gowri, S. Dhineshkumar, J.P. Merlin, A. Sathiyan, Investigation on NiWO 4/PANI composite as an electrode material for energy storage devices. New J. Chem. (2021). https://doi.org/10.1039/D1NJ03831A

    Article  Google Scholar 

  7. R. BoopathiRaja, M. Parthibavarman, A.N. Begum, Hydrothermal induced novel CuCo2O4 electrode for high performance supercapacitor applications. Vacuum 165, 96 (2019)

    Article  CAS  Google Scholar 

  8. R. Srinivasan, E. Elaiyappillai, H.P. Pandian, R. Vengudusamy, P.M. Johnson, S.-M. Chen, R. Karvembu, Sustainable porous activated carbon from Polyalthia longifolia seeds as electrode material for supercapacitor application. J. Electroanal. Chem. 849, 113382 (2019)

    Article  CAS  Google Scholar 

  9. S. Rajkumar, J.C. Ezhilarasi, P. Saranya, J.P. Merlin, Fabrication of CoWO4/PANI composite as electrode material for energy storage applications. J. Phys. Chem. Solids 162, 110500 (2022)

    Article  CAS  Google Scholar 

  10. R. Srinivasan, E. Elaiyappillai, S. Gowri, A. Bella, A. Sathiyan, B. Meenatchi, J.P. Merlin, Electrochemical performance of l-tryptophanium picrate as an efficient electrode material for supercapacitor application. Phys. Chem. Chem. Phys. 21, 11829 (2019)

    Article  CAS  Google Scholar 

  11. M.D. Angelin, S. Rajkumar, J.P. Merlin, A.R. Xavier, M. Franklin, A. Ravichandran, Electrochemical investigation of Zr-doped ZnO nanostructured electrode material for high-performance supercapacitor. Ionics 26, 5757 (2020)

    Article  CAS  Google Scholar 

  12. S. Rajkumar, E. Elanthamilan, J.P. Merlin, I.J.D. Priscillal, I.S. Lydia, Fabrication of a CuCo2O4/PANI nanocomposite as an advanced electrode for high performance supercapacitors. Sustain. Energy Fuels 4, 5313 (2020)

    Article  CAS  Google Scholar 

  13. R. Srinivasan, E. Elaiyappillai, S. Anandaraj, B. Kumar Duvaragan, P.M. Johnson, Study on the electrochemical behavior of BiVO4/PANI composite as a high performance supercapacitor material with excellent cyclic stability. J. Electroanal. Chem. 861, 113972 (2020)

    Article  CAS  Google Scholar 

  14. S. Rajkumar, E. Elanthamilan, J.P. Merlin, Facile synthesis of Zn3V2O8 nanostructured material and its enhanced supercapacitive performance. J. Alloy. Compd. 861, 157939 (2021)

    Article  CAS  Google Scholar 

  15. F. Zhifu, W. Haihong, L. Zhikun, Y. Baocheng, P. Nielsen, Z. Weiyang, A comparative study of graphene oxide affecting the nanoarchitecture and electrochemical properties of urchin-shape nickel cobalt oxide. Vacuum 137, 125 (2017)

    Article  Google Scholar 

  16. Y. Wang, L. Cao, J. Huang, J. Lu, B. Zhang, G. Hai, N. Jia, Enhanced cyclic performance of Cu2V2O7/reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery. J. Alloy. Compd. 724, 421 (2017)

    Article  CAS  Google Scholar 

  17. H.C. Roh, I.Y. Kim, T.Y. Ahn, H.-W. Cheong, Y.S. Yoon, Influence of temperature on performance of CuV2O6 cathode for high voltage thermal battery. J. Korean Ceram. Soc. 58, 507 (2021)

    Article  CAS  Google Scholar 

  18. I. Khan, A. Qurashi, Shape controlled synthesis of copper vanadate platelet nanostructures, their optical band edges, and solar-driven water splitting properties. Sci. Rep. 7, 1 (2017)

    Article  Google Scholar 

  19. M.P. Rao, A. Akhila, J.J. Wu, A.M. Asiri, S. Anandan, Synthesis, characterization and adsorption properties of Cu2V2O7 nanoparticles. Solid State Sci. 92, 13 (2019)

    Article  CAS  Google Scholar 

  20. R. Barik, G. Barik, V. Tanwar, P.P. Ingole, Supercapacitor performance and charge storage mechanism of brannerite type CuV2O6/PANI nanocomposites synthesis with their theoretical aspects. Electrochim. Acta 410, 140015 (2022)

    Article  CAS  Google Scholar 

  21. S. Pandiyarajan, R. Srinivasan, S.S.M. Manickaraj, H.-C. Chuang, P.M. Johnson, Robust fabrication of silver pyro-vanadates via sonochemical approach for advanced energy storage application. J. Alloys Compd. 893, 162268 (2021)

    Article  Google Scholar 

  22. M. Ghiyasiyan-Arani, M. Masjedi-Arani, M. Salavati-Niasari, Novel Schiff base ligand-assisted in-situ synthesis of Cu3V2O8 nanoparticles via a simple precipitation approach. J. Mol. Liq. 216, 59 (2016)

    Article  CAS  Google Scholar 

  23. S. Zhang, Y. Sun, C. Li, L. Ci, Cu3V2O8 hollow spheres in photocatalysis and primary lithium batteries. Solid State Sci. 25, 15 (2013)

    Article  Google Scholar 

  24. F. Wu, C. Yu, W. Liu, T. Wang, J. Feng, S. Xiong, Large-scale synthesis of Co2V2O7 hexagonal microplatelets under ambient conditions for highly reversible lithium storage. J. Mater. Chem. A 3, 16728 (2015)

    Article  CAS  Google Scholar 

  25. F. Wang, H. Zhang, L. Liu, B. Shin, F. Shan, Synthesis, surface properties and optical characteristics of CuV2O6 nanofibers. J. Alloy. Compd. 672, 229 (2016)

    Article  CAS  Google Scholar 

  26. Y. Wang, H. Chai, H. Dong, J. Xu, D. Jia, W. Zhou, Superior cycle stability performance of quasi-cuboidal CoV2O6 microstructures as electrode material for supercapacitors. ACS Appl. Mater. Interfaces 8, 27291 (2016)

    Article  CAS  Google Scholar 

  27. M. Silambarasan, N. Padmanathan, P. Ramesh, D. Geetha, Spinel CuCo2O4 nanoparticles: facile one-step synthesis, optical, and electrochemical properties. Mater. Res. Express 3, 095021 (2016)

    Article  Google Scholar 

  28. Q. Wang, D. Chen, D. Zhang, Electrospun porous CuCo 2 O 4 nanowire network electrode for asymmetric supercapacitors. RSC Adv. 5, 96448 (2015)

    Article  CAS  Google Scholar 

  29. J. Cheng, X. Liu, Y. Lu, X. Hou, L. Han, H. Yan, J. Xu, Y. Luo, Porous CoMn2O4 microspheres as advanced pseudocapacitive materials. Mater. Lett. 165, 231 (2016)

    Article  CAS  Google Scholar 

  30. Y. Zhu, S. An, X. Sun, J. Cui, Y. Zhang, W. He, Flower-like Y-doped α-Ni (OH) 2/graphene heterostructure as advanced electrodes for high performance supercapacitor. Vacuum 172, 109055 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Management of Bishop Heber College (Autonomous), Tiruchirappalli-620 017, Tamil Nadu, India for the support and facilities provided through Material Chemistry Lab, PG and Research Department of Chemistry and DST-FIST Instrumentation Centre (HAIF) at Bishop Heber College, Tiruchirappalli-620 017. The authors thank Cauvery College for Women (autonomous), Tiruchirappalli-620 018, for providing instrument facility under the support of DST-FIST-Level ‘O’ Programme. The author J. Aarthi acknowledges DST-CURIE Core grant for Women PG colleges [Reference No. DST/CURIE-PG/2022/8 (G)] for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Rajkumar or J. Princy Merlin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowri, S., Rajkumar, S., Dhineshkumar, S. et al. Construction of CuV2O6-nanostructured electrode material for supercapacitors. MRS Communications 13, 460–465 (2023). https://doi.org/10.1557/s43579-023-00360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-023-00360-3

Keywords

Navigation