Skip to main content
Log in

The regulation effect of trace amount of oxygen on the properties of p-type boron-doped diamond

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The light doping behavior of boron in microwave plasma chemical vapor deposition diamond films by trace oxygen was investigated. As the oxygen concentration (O/C) increased from 0 to 5%, the growth rate of the diamond film first decreased and then increased. When oxygen was added during the diamond doping process, the suppression of boron doping and the improvement of crystal quality could be observed, and there was a significant suppression of residual nitrogen. Hall effect measurement results show that under the condition of O/C = 3%, high mobility and high quality diamond films can be obtained with a growth rate of 9 μm/h. This work shows that a trace amount of oxygen can compensate the crystal strain brought by boron doping and improve the crystal and surface quality. This technology can obtain high-quality and thick boron-doped diamond films with acceptable mobility, which are suitable for future advanced optoelectronic device applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Imanishi, K. Horikawa, N. Oi et al., 3.8 W/mm RF power density for ALD Al2O3-based two-dimensional hole gas diamond MOSFET operating at saturation velocity. IEEE Electron Device Lett. 40(2), 279–282 (2018). https://doi.org/10.1109/LED.2018.2886596

    Article  Google Scholar 

  2. Q. Wei, F. Lin, R. Wang et al., Heteroepitaxy growth of single crystal diamond on Ir/Pd/Al2O3 (11–20) substrate. Mater. Lett. 303, 130483 (2021). https://doi.org/10.1016/j.matlet.2021.130483

    Article  CAS  Google Scholar 

  3. V.D. Blank, V.S. Bormashov, S.A. Tarelkin et al., Power high-voltage and fast response Schottky barrier diamond diodes. Diam. Relat. Mater. 57, 32–36 (2015). https://doi.org/10.1016/j.diamond.2015.01.005

    Article  CAS  Google Scholar 

  4. A. Polyakov, N. Smirnov, S. Tarelkin et al., Electrical properties of diamond platinum vertical Schottky barrier diodes. Mater. Today: Proceed. 3, S159–S164 (2016). https://doi.org/10.1016/j.matpr.2016.02.027

    Article  Google Scholar 

  5. M. Dutta, S. Mandal, R. Hathwar et al., Determination of minority carrier lifetime of holes in diamond pin diodes using reverse recovery method. IEEE Electron Device Lett. 39(4), 552–555 (2018). https://doi.org/10.1109/LED.2018.2804978

    Article  CAS  Google Scholar 

  6. V. Mortet, J. Pernot, F. Jomard et al., Properties of boron-doped epitaxial diamond layers grown on (110) oriented single crystal substrates. Diam. Relat. Mater. 53, 29–34 (2015). https://doi.org/10.1016/j.diamond.2015.01.006

    Article  CAS  Google Scholar 

  7. J. Barjon, E. Chikoidze, F. Jomard et al., Homoepitaxial boron - doped diamond with very low compensation. Physica Status Solidi (a) 209(9), 1750–1753 (2012). https://doi.org/10.1002/pssa.201200136

    Article  CAS  Google Scholar 

  8. Z. Ma, C. Wu, J. Wang et al., Development of a plate-to-plate MPCVD reactor configuration for diamond synthesis. Diam. Relat. Mater. 66, 135–140 (2016). https://doi.org/10.1016/j.diamond.2016.04.008

    Article  CAS  Google Scholar 

  9. Q. Liang, C.Y. Chin, J. Lai et al., Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl. Phys. Lett. 94(2), 024103 (2009). https://doi.org/10.1063/1.3072352

    Article  CAS  Google Scholar 

  10. E.V. Bushuev, V.Y. Yurov, A.P. Bolshakov et al., Synthesis of single crystal diamond by microwave plasma assisted chemical vapor deposition with in situ low-coherence interferometric control of growth rate. Diam. Relat. Mater. 66, 83–89 (2016). https://doi.org/10.1016/j.diamond.2016.03.023

    Article  CAS  Google Scholar 

  11. S.N. Demlow, R. Rechenberg, T. Grotjohn, The effect of substrate temperature and growth rate on the doping efficiency of single crystal boron doped diamond. Diam. Relat. Mater. 49, 19–24 (2014). https://doi.org/10.1016/j.diamond.2014.06.006

    Article  CAS  Google Scholar 

  12. P.N. Volpe, J. Pernot, P. Muret et al., High hole mobility in boron doped diamond for power device applications. Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3086397

    Article  Google Scholar 

  13. S. Imanishi, K. Kudara, H. Ishiwata et al., Drain current density over 1.1 A/mm in 2D hole gas diamond MOSFETs with regrown p++-diamond ohmic contacts. IEEE Electron Device Lett. 42(2), 204–207 (2020). https://doi.org/10.1109/LED.2020.3047522

    Article  Google Scholar 

  14. L.C. Hao, Y. Shen, X.D. Yang et al., Tailoring of nitrogen-vacancy colour centers in diamond epilayers by in situ sulfur and nitrogen anion engineering. J. Phys. D Appl. Phys. (2019). https://doi.org/10.1088/1361-6463/ab5908

    Article  Google Scholar 

  15. D.Y. Liu, L.C. Hao, Z.A. Chen et al., Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0009615

    Article  PubMed  PubMed Central  Google Scholar 

  16. R. Issaoui, A. Tallaire, A. Mrad et al., Defect and threading dislocations in single crystal diamond: a focus on boron and nitrogen codoping. Physica Status Solidi (a) 216(21), 1900581 (2019). https://doi.org/10.1002/pssa.201900581

    Article  CAS  Google Scholar 

  17. R. Issaoui, J. Achard, L. William et al., Thick and widened high quality heavily boron doped diamond single crystals synthetized with high oxygen flow under high microwave power regime. Diam. Relat. Mater. 94, 88–91 (2019). https://doi.org/10.1016/j.diamond.2019.03.001

    Article  CAS  Google Scholar 

  18. K. Fan, K. Tang, M. Zhang et al., The boron-phosphorous co-doping scheme for possible n-type diamond from first principles. Comput. Mater. Sci. 222, 112113 (2023). https://doi.org/10.1016/j.commatsci.2023.112113

    Article  CAS  Google Scholar 

  19. T. Teraji, High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition. J. Appl. Phys. (2015). https://doi.org/10.1063/1.4929962

    Article  Google Scholar 

  20. L.C. Hao, Z.A. Chen, D.Y. Liu et al., Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films. Chin. Phys. B 32(3), 038101 (2023). https://doi.org/10.1088/1674-1056/ac7f8a

    Article  Google Scholar 

  21. S.A. Bogdanov, A.L. Vikharev, M.N. Drozdov et al., Synthesis of thick and high-quality homoepitaxial diamond with high boron doping level: Oxygen effect. Diam. Relat. Mater. 74, 59–64 (2017). https://doi.org/10.1016/j.diamond.2017.02.004

    Article  CAS  Google Scholar 

  22. M. Zhang, K. Tang, K. Wu et al., First principles investigation on the boron-oxygen complexes in diamond. Comput. Mater. Sci. 216, 111867 (2023). https://doi.org/10.1016/j.commatsci.2022.111867

    Article  CAS  Google Scholar 

  23. R. Wang, B. Peng, H. Bai et al., Morphology, defects and electrical properties of boron-doped single crystal diamond under various oxygen concentration. Mater. Lett. 322, 132345 (2022). https://doi.org/10.1016/j.matlet.2022.132345

    Article  CAS  Google Scholar 

  24. P.N. Volpe, J.C. Arnault, N. Tranchant et al., Boron incorporation issues in diamond when TMB is used as precursor: toward extreme doping levels. Diam. Relat. Mater. 22, 136–141 (2012). https://doi.org/10.1016/j.diamond.2011.12.019

    Article  CAS  Google Scholar 

  25. M. Frenklach, H. Wang, Detailed surface and gas-phase chemical kinetics of diamond deposition. Phys. Rev. B 43(2), 1520 (1991). https://doi.org/10.1103/PhysRevB.43.1520

    Article  CAS  Google Scholar 

  26. P.K. Bachmann, D. Leers, H. Lydtin, Towards a general concept of diamond chemical vapour deposition. Diam. Relat. Mater. 1(1), 1–12 (1991). https://doi.org/10.1016/0925-9635(91)90005-U

    Article  CAS  Google Scholar 

  27. T. Tachibana, Y. Yokota, K. Hayashi et al., Growth of polycrystalline diamond films including diborane and oxygen in the source gas. J. Electrochem. Soc. 146(5), 1996 (1999). https://doi.org/10.1149/1.1391879

    Article  CAS  Google Scholar 

  28. A. Fiori, T. Teraji, Plasma etching phenomena in heavily boron-doped diamond growth. Diam. Relat. Mater. 76, 38–43 (2017). https://doi.org/10.1016/j.diamond.2017.04.007

    Article  CAS  Google Scholar 

  29. N. Lee, A. Badzian, A study on surface morphologies of (001) homoepitaxial diamond films. Diam. Relat. Mater. 6(1), 130–145 (1997). https://doi.org/10.1016/S0925-9635(96)00698-X

    Article  CAS  Google Scholar 

  30. A.A. Chernov, Growth kinetics and capture of impurities during gas phase crystallization. J. Cryst. Growth 42, 55–76 (1977). https://doi.org/10.1016/0022-0248(77)90178-6

    Article  CAS  Google Scholar 

  31. T. Ando, K. Yamamoto, M. Ishii et al., Vapour-phase oxidation of diamond surfaces in O2 studied by diffuse reflectance fourier-transform infrared and temperature-programmed desorption spectroscopy. J. Chem. Soc., Faraday Trans. 89(19), 3635–3640 (1993). https://doi.org/10.1039/FT9938903635

    Article  CAS  Google Scholar 

  32. A. Tallaire, T. Ouisse, A. Lantreibecq et al., Identification of dislocations in synthetic chemically vapor deposited diamond single crystals. Cryst. Growth Des. 16(5), 2741–2746 (2016). https://doi.org/10.1021/acs.cgd.6b00053

    Article  CAS  Google Scholar 

  33. D.Y. Liu, L.C. Hao, W.K. Zhao et al., Effect of oxygen on regulation of properties of moderately boron-doped diamond films. Chin. Phys. B 31(12), 128104 (2022). https://doi.org/10.1088/1674-1056/ac8e96

    Article  CAS  Google Scholar 

  34. S.K. Karna, D.V. Martyshkin, Y.K. Vohra et al., Synthesis and characterization of boron-doped single crystal diamond. MRS Online Proc. Libr. 1519, 1–6 (2013). https://doi.org/10.1557/opl.2012.1759

    Article  CAS  Google Scholar 

  35. V.D. Blank, V.N. Denisov, A.N. Kirichenko et al., Raman scattering by defect-induced excitations in boron-doped diamond single crystals. Diam. Relat. Mater. 17(11), 1840–1843 (2008). https://doi.org/10.1016/j.diamond.2008.07.004

    Article  CAS  Google Scholar 

  36. F. Pruvost, A. Deneuville, Analysis of the Fano in diamond. Diam. Relat. Mater. 10(3–7), 531–535 (2001). https://doi.org/10.1016/S0925-9635(00)00378-2

    Article  CAS  Google Scholar 

  37. H. Li, T. Zhang, L. Li et al., Investigation on crystalline structure, boron distribution, and residual stresses in freestanding boron-doped CVD diamond films. J. Cryst. Growth 312(12–13), 1986–1991 (2010). https://doi.org/10.1016/j.jcrysgro.2010.03.020

    Article  CAS  Google Scholar 

  38. Q.H. Fan, A. Fernandes, E. Pereira et al., Stress-relief behavior in chemical-vapor-deposited diamond films. J. Appl. Phys. 84(6), 3155–3158 (1998). https://doi.org/10.1063/1.368512

    Article  CAS  Google Scholar 

  39. K. Ichikawa, T. Shimaoka, Y. Kato et al., Dislocations in chemical vapor deposition diamond layer detected by confocal Raman imaging. J. Appl. Phys. (2020). https://doi.org/10.1063/5.0021076

    Article  Google Scholar 

  40. X.J. Hu, Y.G. Shen, X.P. Hao et al., The structural properties of B-O codoped diamond films. Diam. Relat. Mater. 18(2–3), 210–212 (2009). https://doi.org/10.1016/j.diamond.2008.07.009

    Article  CAS  Google Scholar 

  41. M. Hetzl, J. Wierzbowski, T. Hoffmann et al., GaN nanowire arrays for efficient optical read-out and optoelectronic control of NV centers in diamond. Nano Lett. 18(6), 3651–3660 (2018). https://doi.org/10.1021/acs.nanolett.8b00763

    Article  CAS  PubMed  Google Scholar 

  42. X. Liu, X. Chen, H.A. Ma et al., Ultrahard stitching of nanotwinned diamond and cubic boron nitride in C2-BN composite. Sci. Rep. 6(1), 30518 (2016). https://doi.org/10.1038/srep30518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. L. Ci, L. Song, C. Jin et al., Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9(5), 430–435 (2010). https://doi.org/10.1038/nmat2711

    Article  CAS  PubMed  Google Scholar 

  44. G. Zhao, L. Jiang, Y. He et al., Sulfonated graphene for persistent aromatic pollutant management. Adv. Mater. 23(34), 3959–3963 (2011). https://doi.org/10.1002/adma.201101007

    Article  CAS  PubMed  Google Scholar 

  45. Z. Zhou, Z. Zhang, H. Peng et al., Nitrogen-and oxygen-containing activated carbon nanotubes with improved capacitive properties. RSC Adv. 4(11), 5524–5530 (2014). https://doi.org/10.1039/C3RA45076G

    Article  CAS  Google Scholar 

  46. X. Liu, X. Chen, D.J. Singh et al., Boron–oxygen complex yields n-type surface layer in semiconducting diamond[J]. Proc. Natl. Acad. Sci. 116(16), 7703–7711 (2019). https://doi.org/10.1073/pnas.1821612116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. S. Kunuku, M. Ficek, A. Wieloszynska et al., Influence of B/N co-doping on electrical and photoluminescence properties of CVD grown homoepitaxial diamond films. Nanotechnology 33(12), 125603 (2021). https://doi.org/10.1088/1361-6528/ac4130

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62274084, 61974059) and the Fundamental Research Funds for the Central Universities (0210-14380193).

Author information

Authors and Affiliations

Authors

Contributions

GYZ: Investigation, methodology, writing—original draft. KT: Conceptualization, writing—review & editing, funding acquisition. YT: Investigation; formal analysis. WKZ: Investigation. KY: Investigation. SMZ: Investigation, formal analysis. SLG: Supervision, funding acquisition.

Corresponding authors

Correspondence to Kun Tang or Shulin Gu.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Tang, K., Teng, Y. et al. The regulation effect of trace amount of oxygen on the properties of p-type boron-doped diamond. Journal of Materials Research 39, 1313–1323 (2024). https://doi.org/10.1557/s43578-024-01312-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-024-01312-w

Keywords

Navigation