Skip to main content

Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition

  • Chapter
  • First Online:
Novel Aspects of Diamond

Part of the book series: Topics in Applied Physics ((TAP,volume 121))

Abstract

Both carbon and silicon are group IV members, but carbon has the smaller atomic number. Diamond, with the same crystalline structure as that of silicon, is expected to act as the basic material for the next generation of high-power electronic, optoelectronic, bio/chemical electronic, quantum computing devices, etc. This is because diamond exhibits electrical properties similar to those of silicon, while having superior physical properties. In this chapter, the author reviewed and discussed the homoepitaxial growth of high-quality single-crystal diamond films with atomically flat surfaces, by using plasma-enhanced chemical vapor deposition (PECVD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.V. Spitsyn, L.L. Bouilov, B.V. Derjaguin, Vapor growth of diamond on diamond and other surfaces. J. Cryst. Growth 52(Part 1), 219–226 (1981). doi:10.1016/0022-0248(81)90197-4

    Google Scholar 

  2. S. Matsumoto, Y. Sato, M. Kamo, N. Setaka, Vapor deposition of diamond particles from methane. Jpn. J. Appl. Phys. 21(4, Part 2), L183–L185 (1982). doi:10.1143/JJAP.21.L183

    Google Scholar 

  3. M. Kamo, Y. Sato, S. Matsumoto, N. Setaka, Diamond synthesis from gas phase in microwave plasma. J. Cryst. Growth 62(3), 642–644 (1983). doi:10.1016/0022-0248(83)90411-6

    Google Scholar 

  4. M. Kamo, H. Yurimoto, Epitaxial growth of diamond on diamond substrate by plasma assisted CVD. Appl. Surf. Sci. 33–34, 553–560 (1988). doi:10.1016/0169-4332(88)90352-2

    Google Scholar 

  5. D.G. Goodwin, J.E. Butler, in Handbook of Industrial Diamond and Diamond Films, ed. by M.A. Prelas, G. Popovici, L.K. Biglow (Marcel Dekker, Inc., NY, 1997), p. 527

    Google Scholar 

  6. T. Teraji, in Physics and Applications of CVD Diamond, ed. by S. Koizumi, C.E. Nebel, M. Nesladek (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008), p. 29

    Google Scholar 

  7. J.E. Butler, A. Cheesman, M.N.R. Ashfold, in CVD Diamond for Electronic Devices and Sensors, ed. by R.S. Sussmann (Wiley, UK, 2009), p. 103

    Google Scholar 

  8. J.E. Butler, Y.A. Mankelevich, A. Cheesman, J. Ma, M.N.R. Ashfold, Understanding the chemical vapor deposition of diamond: recent progress. J. Phys.: Cond. Mat. 21(5), 364201 (2009). doi:10.1002/pssa.200777501

  9. O.A. Williams, R.B. Jackman, High growth rate MWPECVD of single crystal diamond. Diam. Relat. Mater. 13(4–8), 557–560 (2004). doi:10.1016/j.diamond.2004.01.023

    Google Scholar 

  10. J. Achard, F. Silva, O. Brinza, A. Tallaire, A. Gicquel, Coupled effect of nitrogen addition and surface temperature on the morphology and the kinetics of thick CVD diamond single crystals. Diam. Relat. Mater. 16(4–7), 685–689 (2007). doi:10.1016/j.diamond.2006.09.012

    Google Scholar 

  11. H. Yamada, A. Chayahara, Y. Mokuno, S. Shikata, Numerical and experimental studies of high growth-rate over area with 1-inch in diameter under moderate input-power by using MWPCVD. Diam. Relat. Mater. 17(7–10), 1062 (2008). doi:10.1016/j.diamond.2008.01.045

    Google Scholar 

  12. Q. Liang, C.Y. Chin, J. Lai, C. Yan, Y. Meng, H. Mao, R.J. Hemley, Enhanced growth of high quality single crystal diamond by microwave plasma assisted chemical vapor deposition at high gas pressures. Appl. Phys. Lett. 94(2), 024103 (2009). doi:10.1063/1.3072352

    Google Scholar 

  13. Y. Gu, J. Lu, T. Grotjohn, T. Schuelke, J. Asmussen, Microwave plasma reactor design for high pressure and high power density diamond synthesis. Diam. Relat. Mater. 24, 210–214 (2012). doi:10.1016/j.diamond.2012.01.026

    Google Scholar 

  14. Y. Su, H.D. Li, S.H. Cheng, Q. Zhang, Q.L. Wang, X.Y. Lv, G.T. Zou, X.Q. Pei, J.G. Xie, Effect of N2O on high-rate homoepitaxial growth of CVD single crystal diamonds. J. Cryst. Growth 351(1), 51–55 (2012). doi:10.1016/j.jcrysgro.2012.03.041

    Google Scholar 

  15. J. Lu, Y. Gu, T.A. Grotjohn, T. Schuelke, J. Asmussen, Experimentally defining the safe and efficient, high pressure microwave plasma assisted CVD operating regime for single crystal diamond synthesis. Diam. Relat. Mater. 37, 17–28 (2013). doi:10.1016/j.diamond.2013.04.007

    Google Scholar 

  16. N. Fujimori, T. Imai, A. Doi, Characterization of conducting diamond films. Vacuum 36(1–3), 99–102 (1986). doi:10.1016/0042-207X(86)90279-4

    Google Scholar 

  17. N. Fujimori, H. Nakahata, T. Imai, Properties of boron-doped epitaxial diamond films. Jpn. J. Appl. Phys. 29(5, Part 1), 824–827 (1990). doi:10.1143/JJAP.29.824

    Google Scholar 

  18. S. Yamanaka, D. Takeuchi, H. Watanabe, H. Okushi, K. Kajimura, Low-compensated boron-doped homoepitaxial diamond films using trimethylboron. Phys. Stat. Sol. A 174(1), 59–64 (1999). doi:10.1002/(SICI)1521-396X(199907)174:1<59::AID-PSSA59>3.0.CO;2-A

    Google Scholar 

  19. T. Tsubota, T. Fukui, M. Kameta, T. Saito, K. Kusakabe, S. Morooka, H. Maeda, Effect of total reaction pressure on electrical properties of boron doped homoepitaxial (100) diamond films formed by microwave plasma-assisted chemical vapor deposition using trimethylboron. Diam. Relat. Mater. 8(6), 1079–1082 (1999). doi:10.1016/S0925-9635(99)00096-5

    Google Scholar 

  20. S. Ri, H. Kato, M. Ogura, H. Watanabe, T. Makino, S. Yamasaki, H. Okushi, Electrical and optical characterization of boron-doped (111) homoepitaxial diamond films. Diam. Relat. Mater. 14(11–12), 1964–1968 (2005). doi:10.1016/j.diamond.2005.06.032

    Google Scholar 

  21. C. Baron, M. Wade, A. Deneuville, F. Jomard, J. Chevallier, Cathodoluminescence of highly and heavily boron doped (100) homoepitaxial diamond films. Diam. Relat. Mater. 15(4–8), 597–601 (2006). doi:10.1016/j.diamond.2006.01.015

    Google Scholar 

  22. T. Teraji, H. Wada, M. Yamamoto, K. Arima, T. Ito, Highly efficient doping of boron into high-quality homoepitaxial diamond films. Diam. Relat. Mater. 15(4–8), 602–606 (2006). doi:10.1016/j.diamond.2006.01.011

    Google Scholar 

  23. T. Teraji, Chemical vapor deposition of homoepitaxial diamond films. Phys. Stat. Sol. A 203(13), 3324–3357 (2006). doi:10.1002/pssa.200671408

    Google Scholar 

  24. V. Mortet, M. Daenen, T. Teraji, A. Lazea, V. Vorlicek, J. D’Haen, K. Haenen, M. D’Olieslaeger, Characterization of boron doped diamond epilayers grown in a NIRIM type reactor. Diam. Relat. Mater. 17(7–10), 1330–1334 (2008). doi:10.1016/j.diamond.2008.01.087

    Google Scholar 

  25. J. Barjon, N. Habka, C. Mer, F. Jormard, J. Chevallier, P. Bergonzo, Resistivity of boron doped diamond. Phys. Stat. Sol. RRL 3(6), 202–204 (2009). doi:10.1002/pssr.200903097

    Google Scholar 

  26. J. Pernot, P.N. Volpe, F. Omnès, P. Muret, Hall hole mobility in boron-doped homoepitaxial diamond. Phys. Rev. B 81(20), 205203 (2010). doi:10.1103/PhysRevB.81.205203

    Google Scholar 

  27. F. Omnès, P. Muret, P.N. Volpe, M. Wade, J. Pernot, F. Jomard, Study of boron doping in MPCVD grown homoepitaxial diamond layers based on cathodoluminescence spectroscopy, secondary ion mass spectroscopy and capacitance–voltage measurements. Diam. Relat. Mater. 20(7), 912–916 (2011). doi:10.1016/j.diamond.2011.05.010

    Google Scholar 

  28. M. Ogura, H. Kato, T. Makino, H. Okushi, S. Yamasaki, Misorientation-angle dependence of boron incorporation into (0 0 1)-oriented chemical-vapor-deposited (CVD) diamond. J. Cryst. Growth 317(1), 60–63 (2011). doi:10.1016/j.jcrysgro.2011.01.010

    Google Scholar 

  29. M.E. Belousov, Y.A. Mankelevich, P.V. Minakov, A.T. Rakhimov, N.V. Suetin, R.A. Khmelnitskiy, A.A. Tal, A.V. Khomich, Boron-doped homoepitaxial diamond CVD from microwave plasma-activated ethanol/trimethyl borate/hydrogen mixtures. Chem. Vap. Depos. 18(10–12), 302–306 (2012). doi:10.1002/cvde.201206993

    Google Scholar 

  30. J. Achard, R. Issaoui, A. Tallaire, F. Silva, J. Barjon, F. Jomard, A. Gicquel, Freestanding CVD boron doped diamond single crystals: a substrate for vertical power electronic devices? Phys. Stat. Sol. A 209(9), 1651–1658 (2012). doi:10.1002/pssa.201200045

    Google Scholar 

  31. A. Lazea, Y. Garino, T. Teraji, S. Koizumi, High quality p-type chemical vapor deposited {111}-oriented diamonds: growth and fabrication of related electrical devices. Phys. Stat. Sol. A 209(10), 1978–1981 (2012). doi:10.1002/pssa.201228162

    Google Scholar 

  32. S. Koizumi, M. Kamo, Y. Sato, H. Ozaki, T. Inuzuka, Growth and characterization of phosphorous doped {111} homoepitaxial diamond thin films. Appl. Phys. Lett. 71(8), 1065–1067 (1997). doi:10.1063/1.119729

    Google Scholar 

  33. S. Koizumi, T. Teraji, H. Kanda, Phosphorus-doped chemical vapor deposition of diamond. Diam. Relat. Mater. 9(3–6), 935–940 (2000). doi:10.1016/S0925-9635(00)00217-X

    Google Scholar 

  34. M. Katagiri, J. Isoya, S. Koizumi, H. Kanda, Lightly phosphorus-doped homoepitaxial diamond films grown by chemical vapor deposition. Appl. Phys. Lett. 85(26), 6365–6367 (2004). doi:10.1063/1.1840119

    Google Scholar 

  35. M. Suzuki, H. Yoshida, N. Sakuma, T. Ono, T. Sakai, S. Koizumi, Electrical characterization of phosphorus-doped n-type homoepitaxial diamond layers by Schottky barrier diodes. Appl. Phys. Lett. 84(13), 2349–2351 (2004). doi:10.1063/1.1695206

    Google Scholar 

  36. M. Suzuki, S. Koizumi, M. Katagiri, H. Yoshida, N. Sakuma, T. Ono, T. Sakai, Electrical characterization of phosphorus-doped n-type homoepitaxial diamond layers. Diam. Relat. Mater. 13(11–12), 2037–2040 (2004). doi:10.1016/j.diamond.2004.06.022

    Google Scholar 

  37. H. Kato, S. Yamasaki, H. Okushi, n-Type doping of (001)-oriented single-crystalline diamond by phosphorus. Appl. Phys. Lett. 86(22), 222111 (2005). doi:10.1063/1.1944228

    Google Scholar 

  38. S. Koizumi, M. Suzuki, n-Type doping of diamond. Phys. Stat. Sol. A 203(13), 3358–3366 (2006). doi:10.1002/pssa.200671407

    Google Scholar 

  39. H. Kato, T. Makino, S. Yamasaki, H. Okushi, n-Type diamond growth by phosphorus doping on (0 0 1)-oriented surface. J. Phys. D Appl. Phys. 40(20), 6189–6200 (2007). doi:10.1088/0022-3727/40/20/s05

    Google Scholar 

  40. J. Perot, S. Koizumi, Electron mobility in phosphorous doped {111} homoepitaxial diamond. Appl. Phys. Lett. 93(5), 052105 (2008). doi:10.1063/1.2969066

    Google Scholar 

  41. H. Kato, D. Takeuchi, N. Tokuda, H. Umezawa, S. Yamasaki, H. Okushi, Electrical activity of doped phosphorus atoms in (001) n-type diamond. Phys. Stat. Sol. A 205(9), 2195–2199 (2008). doi:10.1002/pssa.200879722

    Google Scholar 

  42. M.-A. Pinault-Thaury, B. Berini, I. Sternger, E. Chikoidze, A. Lusson, F. Jomard, J. Chevallier, J. Barjon, High fraction of substitutional phosphorus in a (100) diamond epilayer with low surface roughness. Appl. Phys. Lett. 100(19), 192109 (2012). doi:10.1063/1.4712617

  43. S. Koizumi, K. Watanabe, M. Hasegawa, H. Kanda, Ultraviolet emission from a diamond pn junction. Science 292(5523), 1899–1901 (2001). doi:10.1126/science.1060258

    Google Scholar 

  44. H. Okushi, High quality homoepitaxial CVD diamond for electronic devices. Diam. Relat. Mater. 10(3–7), 281–288 (2001). doi:10.1016/S0925-9635(00)00399-X

    Google Scholar 

  45. T. Makino, N. Tokuda, H. Kato, M. Ogura, H. Watanabe, S. Ri, S. Yamasaki, H. Okushi, High-efficiency excitonic emission with deep-ultraviolet light from (001)-oriented diamond p-i-n junction. Jpn. J. Appl. Phys. 45(37–41, Part 2), L1042–L1044 (2006). doi:10.1143/jjap.45.l1042

    Google Scholar 

  46. D. Shin, N. Tokuda, B. Rezek, C.E. Nebel, Periodically arranged benzene-linker molecules on boron-doped single-crystalline diamond films for DNA sensing. Electrochem. Commun. 8(5), 844–850 (2006). doi:10.1016/j.elecom.2006.03.014

    Google Scholar 

  47. D. Shin, B. Rezek, N. Tokuda, D. Takeuchi, H. Watanabe, T. Nakamura, T. Yamamoto, C.E. Nebel, Photo- and electrochemical bonding of DNA to single crystalline CVD diamond. Phys. Stat. Sol. A 203(13), 3245–3272 (2006). doi:10.1002/pssa.200671402

    Google Scholar 

  48. H. Umezawa, N. Tokuda, M. Ogura, S. Ri, S. Shikata, Characterization of leakage current on diamond Schottky barrier diodes using thermionic-field emission modeling. Diam. Relat. Mater. 15(11–12), 1949–1953 (2006). doi:10.1016/j.diamond.2006.08.030

    Google Scholar 

  49. K.-S. Song, T. Hiraki, H. Umezawa, H. Kawarada, Miniaturized diamond field-effect transistors for application in biosensors in electrolyte solution. Appl. Phys. Lett. 90(6), 063901 (2007). doi:10.1063/1.2454390

    Google Scholar 

  50. E. Kohn, A. Denisenko, Concepts for diamond electronics. Thin Solid Films 515(10), 4333–4339 (2007). doi:10.1016/j.tsf.2006.07.179

    Google Scholar 

  51. M. Liao, Y. Koide, J. Alvarez, Single Schottky-barrier photodiode with interdigitated-finger geometry: application to diamond. Appl. Phys. Lett. 90(12), 123507 (2007). doi:10.1063/1.2715440

    Google Scholar 

  52. T. Makino, N. Tokuda, H. Kato, M. Ogura, H. Watanabe, S. Ri, S. Yamasaki, H. Okushi, Electrical and light-emitting properties of (001)-oriented homoepitaxial diamond p–i–n junction. Diam. Relat. Mater. 16(4–7), 1025–1028 (2007). doi:10.1016/j.diamond.2007.01.024

    Google Scholar 

  53. C.E. Nebel, D. Shin, B. Rezek, N. Tokuda, H. Uetsuka, H. Watanabe, Diamond and biology. J. R. Soc. Interface 4(14), 439–461 (2007). doi:10.1098/rsif.2006.0196

    Google Scholar 

  54. H. Umezawa, T. Saito, N. Tokuda, M. Ogura, S. Ri, H. Yoshikawa, S. Shikata, Leakage current analysis of diamond Schottky barrier diode. Appl. Phys. Lett. 90(7), 073506 (2007). doi:10.1063/1.2643374

    Google Scholar 

  55. T. Makino, N. Tokuda, H. Kato, S. Kanno, S. Yamasaki, H. Okushi, Electrical and light-emitting properties of homoepitaxial diamond p-i-n junction. Phys. Stat. Sol. A 205(9), 2200–2206 (2008). doi:10.1002/pssa.200879717

    Google Scholar 

  56. T. Makino, S. Tanimoto, Y. Hayashi, H. Kato, N. Tokuda, M. Ogura, D. Takeuchi, K. Oyama, H. Ohashi, H. Okushi, S. Yamasaki, Diamond Schottky-pn diode with high forward current density and fast switching operation. Appl. Phys. Lett. 94(26), 262101 (2009). doi:10.1063/1.3159837

    Google Scholar 

  57. T. Makino, S. Ri, N. Tokuda, H. Kato, S. Yamasaki, H. Okushi, Electrical and light-emitting properties from (111)-oriented homoepitaxial diamond p–i–n junctions. Diam. Relat. Mater. 18(5–8), 764–767 (2009). doi:10.1016/j.diamond.2009.01.016

    Google Scholar 

  58. K. Oyama, S. Ri, H. Kato, M. Ogura, T. Makino, D. Takeuchi, N. Tokuda, H. Okushi, S. Yamasaki, High performance of diamond p[sup +]-i-n[sup +] junction diode fabricated using heavily doped p+ and n+ layers. Appl. Phys. Lett. 94(15), 152109 (2009). doi:10.1063/1.3120560

    Google Scholar 

  59. P.-N. Volpe, P. Muret, J. Pernot, F. Omnès, T. Teraji, Y. Koide, F. Jomard, D. Planson, P. Brosselard, N. Dheilly, B. Vergne, S. Scharnholz, Extreme dielectric strength in boron doped homoepitaxial diamond. Appl. Phys. Lett. 97(22), 223501 (2010). doi:10.1063/1.3520140

    Google Scholar 

  60. R. Hoffmann, A. Kriele, H. Obloh, N. Tokuda, W. Smirnov, N. Yang, C.E. Nebel, The creation of a biomimetic interface between boron-doped diamond and immobilized proteins. Biomaterials 32(30), 7325–7332 (2011). doi:10.1016/j.biomaterials.2011.06.052

    Google Scholar 

  61. T. Kawae, Y. Hori, T. Nakajima, H. Kawasaki, N. Tokuda, S. Okamura, Y. Takano, A. Morimoto, Structure and electrical properties of (Pr, Mn)-codoped BiFeO3/B-doped diamond layered structure. Electrochem. Solid-State Lett. 14(6), G31–G34 (2011). doi:10.1149/1.3568838

    Google Scholar 

  62. H. Kawarada, A.R. Ruslinda, Diamond electrolyte solution gate FETs for DNA and protein sensors using DNA/RNA aptamers. Phys. Stat. Sol. A 208(9), 2005–2016 (2011). doi:10.1002/pssa.201100503

    Google Scholar 

  63. R. Hoffmann, H. Obloh, N. Tokuda, N. Yang, C.E. Nebel, Fractional surface termination of diamond by electrochemical oxidation. Langmuir 28(1), 47–50 (2012). doi:10.1021/la2039366

    Google Scholar 

  64. T. Iwasaki, Y. Hoshino, K. Tsuzuki, H. Kato, T. Makino, M. Ogura, D. Takeuchi, T. Matsumoto, H. Okushi, S. Yamasaki, M. Hatano, Diamond junction field-effect transistors with selectively grown n+-side gates. Appl. Phys. Express 5(9), 091301 (2012). doi:10.1143/apex.5.091301

    Google Scholar 

  65. H. Kato, K. Oyama, T. Makino, M. Ogura, D. Takeuchi, S. Yamasaki, Diamond bipolar junction transistor device with phosphorus-doped diamond base layer. Diam. Relat. Mater. 27–28, 19–22 (2012). doi:10.1016/j.diamond.2012.05.004

    Google Scholar 

  66. T. Kawae, H. Kawasaki, T. Nakajima, N. Tokuda, S. Okamura, A. Morimoto, Y. Takano, A. Morimoto, Y. Takano, Fabrication of (Bi,Pr)(Fe,Mn)O3 thin films on polycrystalline diamond substrates by chemical solution deposition and their properties. Jpn. J. Appl. Phys. 51(9 S1), 09LA08 (2012). doi:10.1143/jjap.51.09la08

  67. R. Edgington, A.R. Ruslinda, S. Sato, Y. Ishiyama, K. Tsuge, T. Ono, H. Kawarada, R.B. Jackman, Boron delta-doped (111) diamond solution gate field effect transistors. Biosens. Bioelectron. 33(1), 152–157 (2012). doi:10.1016/j.bios.2011.12.044

    Google Scholar 

  68. H. Kawarada, High-current metal oxide semiconductor field-effect transistors on H-terminated diamond surfaces and their high-frequency operation. Jpn. J. Appl. Phys. 51(9R), 090111 (2012). doi:10.1143/jjap.51.090111

    Google Scholar 

  69. T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, S. Yamasaki, Device design of diamond Schottky-pn diode for low-loss power electronics. Jpn. J. Appl. Phys. 51(9R), 090116 (2012). doi:10.1143/jjap.51.090116

    Google Scholar 

  70. S. Cheng, L. Sang, M. Liao, J. Liu, M. Imura, H. Li, Y. Koide, Integration of high-dielectric constant Ta2O5 oxides on diamond for power devices. Appl. Phys. Lett. 101(23), 232907 (2012). doi:10.1063/1.4770059

    Google Scholar 

  71. N. Mizuochi, T. Makino, H. Kato, D. Takeuchi, M. Ogura, H. Okushi, M. Nothaft, P. Neumann, A. Gali, F. Jelezko, J. Wrachtrup, S. Yamasaki, Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012). doi:10.1038/nphoton.2012.75

    Google Scholar 

  72. M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez, Y. Koide, Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Jpn. J. Appl. Phys. 51(9R), 090115 (2012). doi:10.1143/jjap.51.090115

  73. D. Takeuchi, T. Makino, H. Kato, M. Ogura, H. Okushi, H. Ohashi, S. Yamasaki, High-voltage vacuum switch with a diamond p–i–n diode using negative electron affinity. Jpn. J. Appl. Phys. 51(9R), 090113 (2012). doi:10.1143/jjap.51.090113

    Google Scholar 

  74. H. Umezawa, M. Nagase, Y. Kato, S. Shikata, High temperature application of diamond power device. Diam. Relat. Mater. 24, 201–205 (2012). doi:10.1016/j.diamond.2012.01.011

    Google Scholar 

  75. G. Chicot, A. Marèchal, R. Motte, P. Muret, E. Gheeraert, J. Pernot, Metal oxide semiconductor structure using oxygen-terminated diamond. Appl. Phys. Lett. 102(24), 242108 (2013). doi:10.1063/1.4811668

    Google Scholar 

  76. A. Gicquel, K. Hassouni, S. Farhat, Y. Breton, C.D. Scott, M. Lefebvre, M. Pealat, Spectroscopic analysis and chemical kinetics modeling of a diamond deposition plasma reactor. Diam. Relat. Mater. 3(4–6), 581–586 (1994). doi:10.1016/0925-9635(94)90229-1

    Google Scholar 

  77. C. Benndorf, P. Joeris, R. Kröger, Mass and optical emission spectroscopy of plasmas for diamond synthesis. Pure Appl. Chem. 66(6), 1195–1205 (1994). doi:10.1351/pac199466061195

    Google Scholar 

  78. T. Fujii, M. Kareev, Mass spectrometric studies of a CH4/H2 microwave plasma under diamond deposition conditions. J. Appl. Phys. 89(5), 2543–2546 (2001). doi:10.1063/1.1346655

    Google Scholar 

  79. P. Deák, A. Kováts, P. Csíkváry, I. Maros, G. Hárs, Ethynyl (C2H): a major player in the chemical vapor deposition of diamond. Appl. Phys. Lett. 90(5), 051503 (2007). doi:10.1063/1.2437718

    Google Scholar 

  80. H. Zhou, J. Watanabe, M. Miyake, A. Ogino, M. Nagatsu, R. Zhan, Optical and mass spectroscopy measurements of Ar/CH4/H2 microwave plasma for nano-crystalline diamond film deposition. Diam. Relat. Mater. 16(4–7), 675–678 (2007). doi:10.1016/j.diamond.2006.11.074

    Google Scholar 

  81. J. Ma, M.N.R. Ashfold, Y.A. Mankelevich, Validating optical emission spectroscopy as a diagnostic of microwave activated CH4/Ar/H2 plasmas used for diamond chemical vapor deposition. J. Appl. Phys. 105(4), 043302 (2009). doi:10.1063/1.3078032

    Google Scholar 

  82. A. Gicquel, N. Derkaoui, C. Rond, F. Benedic, G. Cicala, D. Moneger, K. Hassouni, Quantitative analysis of diamond deposition reactor efficiency. Chem. Phys. 398, 239–247 (2012). doi:10.1016/j.chemphys.2011.08.022

    Google Scholar 

  83. J.C. Richley, M.W. Kelly, M.N.R. Ashfold, Y.A. Mankelevich, Optical emission from microwave activated C/H/O gas mixtures for diamond chemical vapor deposition. J. Phys. Chem. A 116(38), 9447–9458 (2012). doi:10.1021/jp306191y

    Google Scholar 

  84. P. Bou, J.C. Boettner, L. Vandenbulcke, Kinetic calculations in plasmas used for diamond deposition. Jpn. J. Appl. Phys. 31(5A, Part 1), 1505–1513 (1992). doi:10.1143/JJAP.31.1505

    Google Scholar 

  85. M.C. McMaster, W.L. Hsu, M.E. Coltrin, D.S. Dandy, C. Fox, Dependence of the gas composition in a microwave plasma-assisted diamond chemical vapor deposition reactor on the inlet carbon source: CH4 versus C2H2. Diam. Relat. Mater. 4(7), 1000–1008 (1995). doi:10.1016/0925-9635(95)00270-7

    Google Scholar 

  86. J.M. Larson, M.T. Swihart, S.L. Girshick, Characterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond. Diam. Relat. Mater. 8(10), 1863–1874 (1999). doi:10.1016/S0925-9635(99)00143-0

    Google Scholar 

  87. O. Aubry, J.-L. Delfau, C. Met, L. Vandenbulcke, C. Vovelle, Precursors of diamond films analysed by molecular beam mass spectrometry of microwave plasmas. Diam. Relat. Mater. 13(1), 116–124 (2004). doi:10.1016/j.diamond.2003.09.009

    Google Scholar 

  88. J. Achard, F. Silva, A. Tallaire, X. Bonnin, G. Lomvardi, K. Hassouni, A. Gicquel, High quality MPACVD diamond single crystal growth: high microwave power density regime. J. Phys. D 40(20), 6175–6188 (2007). doi:10.1088/0022-3727/40/20/S04

    Google Scholar 

  89. H. Yamada, A. Chayahara, Y. Mokuno, Simplified description of microwave plasma discharge for chemical vapor deposition of diamond. J. Appl. Phys. 101(6), 063302 (2007). doi:10.1063/1.2711811

    Google Scholar 

  90. J. Ma, J.C. Richley, M.N.R. Ashfold, Y.A. Mankelevich, Probing the plasma chemistry in a microwave reactor used for diamond chemical vapor deposition by cavity ring down spectroscopy. J. Appl. Phys. 104(10), 103305 (2008). doi:10.1063/1.3021095

    Google Scholar 

  91. F. Silva, J. Achard, O. Brinza, X. Bonnin, K. Hassouni, A. Anthonis, K.D. Corte, J. Barjon, High quality, large surface area, homoepitaxial MPACVD diamond growth. Diam. Relat. Mater. 18(5–8), 683–697 (2009). doi:10.1016/j.diamond.2009.01.038

    Google Scholar 

  92. K. Hassouni, F. Silva, A. Gicquel, Modelling of diamond deposition microwave cavity generated plasmas. J. Phys. D 43(15), 153001 (2010). doi:10.1088/0022-3727/43/15/153001

    Google Scholar 

  93. H. Yamada, A. Chayahara, Y. Mokuno, S. Shikata, Model of reactive microwave plasma discharge for growth of single-crystal diamond. Jpn. J. Appl. Phys. 50(1S1), 01AB02 (2011). doi:10.1143/jjap.50.01ab02

  94. H. Yamada, Numerical simulations to study growth of single-crystal diamond by using microwave plasma chemical vapor deposition with reactive (H, C, N) species. Jpn. J. Appl. Phys. 51(9R), 090105 (2012). doi:10.1143/jjap.51.090105

    Google Scholar 

  95. C.-L. Cheng, H.-C. Chang, J.-C. Lin, K.-J. Song, J.-K. Wang, Direct observation of hydrogen etching anisotropy on diamond single crystal surfaces. Phys. Rev. Lett. 78(19), 3713–3716 (1997). doi:10.1103/PhysRevLett.78.3713

    Google Scholar 

  96. T. Tsuno, T. Imai, Y. Nishibayashi, K. Hamada, N. Fujimori, Epitaxially grown diamond (001) 2×1/1×2 surface investigated by scanning tunneling microscopy in air. Jpn. J. Appl. Phys. 30(5, Part 1), 1063–1066 (1991). doi:10.1143/JJAP.30.1063

    Google Scholar 

  97. H. Sasaki, H. Kawarada, Structure of chemical vapor deposited diamond (111) surfaces by scanning tunneling microscopy. Jpn. J. Appl. Phys. 32(12A, Part 2), L1771–L1774 (1993). doi:10.1143/JJAP.32.L1771

    Google Scholar 

  98. L.F. Sutcu, C.J. Chu, M.S. Thompson, R.H. Hauge, J.L. Margrave, M.P. D’Evelyn, Atomic force microscopy of (100), (110), and (111) homoepitaxial diamond films. J. Appl. Phys. 71(12), 5930–5940 (1992). doi:10.1063/1.350443

    Google Scholar 

  99. T. Tsuno, T. Tomikawa, S. Shikata, T. Imai, N. Fujirmori, Diamond(001) single-domain 2×1 surface grown by chemical vapor deposition. Appl. Phys. Lett. 64(5), 572–574 (1994). doi:10.1063/1.111107

    Google Scholar 

  100. T. Tsuno, T. Tomikawa, S. Shikata, N. Fujimori, Diamond homoepitaxial growth on (111) substrate investigated by scanning tunneling microscope. J. Appl. Phys. 75(3), 1526–1529 (1994). doi:10.1063/1.356389

    Google Scholar 

  101. M. McGonigal, J.N. Russell Jr., P.E. Pehrsson, H.G. Maguire, J.E. Butler, Multiple internal reflection infrared spectroscopy of hydrogen adsorbed on diamond(110). J. Appl. Phys. 77(8), 4049–4053 (1995). doi:10.1063/1.359487

    Google Scholar 

  102. H. Kawarada, H. Ssaki, A. Sato, Scanning-tunneling-microscope observation of the homoepitaxial diamond (001) 2×1 reconstruction observed under atmospheric pressure. Phys. Rev. B 52(15), 11351–11358 (1995). doi:10.1103/PhysRevB.52.11351

    Google Scholar 

  103. Y. Kuang, Y. Wang, N. Lee, A. Badzian, T. Badzian, T.T. Tsong, Surface structure of homoepitaxial diamond (001) films, a scanning tunneling microscopy study. Appl. Phys. Lett. 67(25), 3721–3723 (1995). doi:10.1063/1.115361

    Google Scholar 

  104. C.-L. Cheng, J.-C. Lin, H.-C. Chang, J.-K. Wang, Characterization of CH stretches on diamond C(111) single and nanocrystal surfaces by infrared absorption spectroscopy. J. Chem. Phys. 105(19), 8977–8978 (1996). doi:10.1063/1.472938

    Google Scholar 

  105. T. Takami, K. Suzuki, I. Kusunoki, I. Sakaguchi, M. Nishitani-Gamo, T. Ando, RHEED and AFM studies of homoepitaxial diamond thin film on C(001) substrate produced by microwave plasma CVD. Diam. Relat. Mater. 8(2–5), 701–704 (1999). doi:10.1016/S0925-9635(98)00391-4

    Google Scholar 

  106. T. Takami, I. Kusunoki, M. Nishitani-Gamo, T. Ando, Homoepitaxial diamond (001) thin film studied by reflection high-energy electron diffraction, contact atomic force microscopy, and scanning tunneling microscopy. J. Vac. Sci. Technol. B 18(3), 1198–1202 (2000). doi:10.1116/1.591360

    Google Scholar 

  107. A. Heerwagen, M. Strobel, M. Himmelhaus, M. Buck, Chemical vapor deposition of diamond: an in situ study by vibrational spectroscopy. J. Am. Chem. Soc. 123(27), 6732–6733 (2001). doi:10.1021/ja016056q

    Google Scholar 

  108. L.K. Bigelow, M.P. D’Evelyn, Role of surface and interface science in chemical vapor deposition diamond technology. Surf. Sci. 500(1–3), 986–1004 (2002). doi:10.1016/S0039-6028(01)01545-X

    Google Scholar 

  109. L. Ackermann, W. Kulisch, Investigation of diamond etching and growth by in situ scanning tunneling microscopy. Diam. Relat. Mater. 8(7), 1256–1260 (1999). doi:10.1016/S0925-9635(99)00119-3

    Google Scholar 

  110. B. Voigtländer, M. Kästner, P. Šmilauer, Magic islands in Si/Si(111) homoepitaxy. Phys. Rev. Lett. 81(4), 858–861 (1998). doi:10.1103/PhysRevLett.81.858

    Google Scholar 

  111. H. Yamaguchi, Y. Homma, Imaging of layer by layer growth processes during molecular beam epitaxy of GaAs on (111)A substrates by scanning electron microscopy. Appl. Phys. Lett. 73(21), 3079–3081 (1998). doi:10.1063/1.122678

    Google Scholar 

  112. M.H. Xie, S.M. Seutter, W.K. Zhu, L.X. Zheng, H. Wu, S.Y. Tong, Anisotropic step-flow growth and island growth of GaN(0001) by molecular beam epitaxy. Phys. Rev. Lett. 82(13), 2749–2752 (1999). doi:10.1103/PhysRevLett.82.2749

  113. N. Tokuda, T. Makino, T. Inokuma, S. Yamasaki, Formation of step-free surfaces on diamond (111) mesas by homoepitaxial lateral growth. Jpn. J. Appl. Phys. 51(9R), 090107 (2012). doi:10.1143/JJAP.51.090107

    Google Scholar 

  114. N. Tokuda, T. Makino, T. Inokuma, S. Yamasaki, Formation of step-free diamond (111) surfaces by plasma-enhanced CVD. J. Jpn. Assoc. Cryst. Growth 39(4), 185–189 (2012) (in Japanese)

    Google Scholar 

  115. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, J. Wrachtrup, Observation of coherent oscillations in a single electron spin. Phys. Rev. Lett. 92(7), 076401 (2004). doi:10.1103/PhysRevLett.92.076401

    Google Scholar 

  116. L. Childress, M.V. Gurudev Dutt, J.M. Taylor, A.S. Zibrov, F. Jelezko, J. Wrachtrup, P.R. Hemmer, M.D. Lukin, Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314(5797), 281–285 (2006). doi:10.1126/science.1131871

  117. M.V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A.S. Zibrov, P.R. Hemmer, M.D. Lukin, Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829), 1312–1316 (2007). doi:10.1126/science.1139831

  118. J.R. Maze, J.M. Taylor, M.D. Lukin, Electron spin decoherence of single nitrogen-vacancy defects in diamond. Phys. Rev. B 78(9), 094303 (2008). doi:10.1103/PhysRevB.78.094303

    Google Scholar 

  119. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, Multipartite entanglement among single spins in diamond. Scinece 320(5881), 1326–1329 (2008). doi:10.1126/science.1157233

    Google Scholar 

  120. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 8, 383–387 (2009). doi:10.1038/nmat2420

    Google Scholar 

  121. B.B. Buckley, G.D. Fuchs, L.C. Bassett, D.D. Awschalom, Spin-light coherence for single-spin measurement and control in diamond. Science 330(6008), 1212–1215 (2010). doi:10.1126/science.1196436

    Google Scholar 

  122. X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S. Karimoto, H. Nakano, W.J. Munro, Y. Tokura, M.S. Everitt, K. Nemoto, M. Kasu, N. Mizuochi, K. Semba, Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond. Nature 478(7368), 221–224 (2011). doi:10.1038/nature10462

    Google Scholar 

  123. K.C. Lee, M.R. Sprague, B.J. Sussman, J. Nunn, N.K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K.F. Reim, D. England, D. Jaksch, I.A. Walmsley, Entangling macroscopic diamonds at room temperature. Science 334(6060), 1253–1256 (2011). doi:10.1126/science.1211914

    Google Scholar 

  124. J.F. Prings, Activation of boron-dopant atoms in ion-implanted diamonds. Phys. Rev. B 38(8), 5576–5584 (1988). doi:10.1103/PhysRevB.38.5576

    Google Scholar 

  125. C. Uzan-Saguy, R. Kalish, R. Walker, D.N. Jamieson, S. Prawer, Formation of delta-doped, buried conducting layers in diamond, by high-energy, B-ion implantation. Diam. Relat. Mater. 7(10), 1429–1432 (1998). doi:10.1016/S0925-9635(98)00231-3

    Google Scholar 

  126. K. Ueda, M. Kasu, T. Makimoto, High-pressure and high-temperature annealing as an activation method for ion-implanted dopants in diamond. Appl. Phys. Lett. 90(12), 122102 (2007). doi:10.1063/1.2715034

    Google Scholar 

  127. N. Tsubouchi, M. Ogura, Enhancement of dopant activation in B-implanted diamond by high-temperature annealing. Jpn. J. Appl. Phys. 47(9R), 7047–7051 (2008). doi:10.1143/JJAP.47.7047

    Google Scholar 

  128. N. Tsubouchi, M. Ogura, N. Mizuochi, H. Watanabe, Electrical properties of a B doped layer in diamond formed by hot B implantation and high-temperature annealing. Diam. Relat. Mater. 18(2–3), 128–131 (2009). doi:10.1016/j.diamond.2008.09.013

    Google Scholar 

  129. A.K. Ratnikova, M.P. Dukhnovsky, Y.Y. Fedorov, V.E. Zemlyakov, A.B. Muchnikov, A.L. Vikharev, A.M. Gorbachev, D.B. Radishev, A.A. Altukhov, A.V. Mitenkin, Homoepitaxial single crystal diamond grown on natural diamond seeds (type IIa) with boron-implanted layer demonstrating the highest mobility of 1150 cm2/V s at 300 K for ion-implanted diamond. Diam. Relat. Mater. 20(8), 1243–1245 (2011). doi:10.1016/j.diamond.2011.07.007

    Google Scholar 

  130. V.S. Bormashov, S.A. Tarelkin, S.G. Buga, M.S. Kuznetsov, S.A. Terentiev, A.N. Semenov, V.D. Blank, Electrical properties of the high quality boron-doped synthetic single-crystal diamonds grown by the temperature gradient method. Diam. Relat. Mater. 35, 19–23 (2013). doi:10.1016/j.diamond.2013.02.011

    Google Scholar 

  131. S. Yamanaka, H. Watanabe, S. Masai, D. Takeuchi, H. Okushi, K. Kajimura, High-quality B-doped homoepitaxial diamond films using trimethylboron. Jpn. J. Appl. Phys. 37(10A, Part 2), L1129–L1131 (1998). doi:10.1143/JJAP.37.L1129

    Google Scholar 

  132. J.-P. Lagrange, A. Deneuville, E. Gheeraert, Activation energy in low compensated homoepitaxial boron-doped diamond films. Diam. Relat. Mater. 7(9), 1390–1393 (1998). doi:10.1016/S0925-9635(98)00225-8

    Google Scholar 

  133. E.A. Ekimov, V.A. Sidrov, E.D. Bauer, N.N. Mel’nki, N.J. Curro, J.D. Thompson, S.M. Stishov, Superconductivity in diamond. Nature 428(6982), 542–545 (2004). doi:10.1038/nature02449

  134. Y. Takano, M. Nagao, I. Sakaguchi, M. Tachiki, T. Hatano, K. Kobayashi, H. Umezawa, H. Kawarada, Superconductivity in diamond thin films well above liquid helium temperature. Appl. Phys. Lett. 85(14), 2851–2853 (2004). doi:10.1063/1.1802389

    Google Scholar 

  135. T. Yokoya, T. Nakamura, T. Matsushita, T. Muro, Y. Takano, M. Nagao, T. Takenouchi, H. Kawarada, T. Oguchi, Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature 438(7068), 647–650 (2005). doi:10.1038/nature04278

    Google Scholar 

  136. E. Bustarret, Superconducting diamond: an introduction. Phys. Stat. Sol. A 205(5), 997–1008 (2008). doi:10.1002/pssa.200777501

    Google Scholar 

  137. T. Klein, P. Achatz, J. Kacmarcik, C. Marcenat, F. Gustafsson, J. Marcus, E. Bustarret, J. Pernot, F. Omnes, B.E. Sernelius, C. Persson, A. Silva, C. Cytermann, Metal-insulator transition and superconductivity in boron-doped diamond. Phys. Rev. B 75(16), 165313 (2007). doi:10.1103/PhysRevB.75.165313

    Google Scholar 

  138. A. Kawano, H. Ishiwata, S. Iriyama, R. Okada, T. Yamaguchi, Y. Takano, H. Kawarada, Superconductor-to-insulator transition in boron-doped diamond films grown using chemical vapor deposition. Phys. Rev. B 82(8), 085318 (2010). doi:10.1103/PhysRevB.82.085318

    Google Scholar 

  139. N. Tokuda, T. Saito, H. Umezawa, H. Okushi, S. Yamasaki, The role of boron atoms in heavily boron-doped semiconducting homoepitaxial diamond growth—study of surface morphology. Diam. Relat. Mater. 16(2), 409–411 (2007). doi:10.1016/j.diamond.2006.08.013

    Google Scholar 

  140. N. Tokuda, H. Umezawa, T. Saito, K. Yamabe, H. Okushi, S. Yamasaki, Surface roughening of diamond (001) films during homoepitaxial growth in heavy boron doping. Diam. Relat. Mater. 16(4–7), 767–770 (2007). doi:10.1016/j.diamond.2006.12.024

    Google Scholar 

  141. N. Tokuda, H. Umezawa, K. Yamabe, H. Okushi, S. Yamasaki, Hillock-free heavily boron-doped homoepitaxial diamond films on misoriented (001) substrates. Jpn. J. Appl. Phys. 46(4A, Part 1), 1469–1470 (2007). doi:10.1143/JJAP.46.1469

    Google Scholar 

  142. H. Kato, D. Takeuchi, N. Tokuda, H. Umezawa, H. Okushi, S. Yamasaki, Characterization of specific contact resistance on heavily phosphorus-doped diamond films. Diam. Relat. Mater. 18(5–8), 782–785 (2009). doi:10.1016/j.diamond.2009.01.033

    Google Scholar 

  143. T. Yatsui, W. Nomura, M. Naruse, M. Ohtsu, Realization of an atomically flat surface of diamond using dressed photon-phonon etching. J. Phys. D 45(47), 475302 (2012). doi:10.1088/0022-3727/45/47/475302

    Google Scholar 

  144. A. Kubota, S. Fukuyama, Y. Ichimori, M. Touge, Surface smoothing of single-crystal diamond (100) substrate by polishing technique. Diam. Relat. Mater. 24, 59–62 (2012). doi:10.1016/j.diamond.2011.10.022

    Google Scholar 

  145. Y. Kato, H. Umezawa, S. Shikata, M. Touge, Effect of an ultraflat substrate on the epitaxial growth of chemical-vapor-deposited diamond. Appl. Phys. Express 6(2), 025506 (2013). doi:10.7567/APEX.6.025506

    Google Scholar 

  146. N. Tokuda, H. Umezawa, K. Yamabe, H. Okushi, S. Yamasaki, Growth of atomically step-free surface on diamond {111} mesas. Diam. Relat. Mater. 19(4), 288–290 (2010). doi:10.1016/j.diamond.2009.11.015

    Google Scholar 

  147. H. Sawada, H. Ichinose, H. Watanabe, D. Takeuchi, H. Okushi, Cross-sectional TEM study of unepitaxial crystallites in a homoepitaxial diamond film. Diam. Relat. Mater. 10(11), 2030–2034 (2001). doi:10.1016/S0925-9635(01)00477-0

    Google Scholar 

  148. T. Tsuno, T. Imai, N. Fujimori, Twinning structure and growth hillock on diamond (001) epitaxial film. Jpn. J. Appl. Phys. 33(7A, Part 1), 4039–4043 (1994). doi:10.1143/JJAP.33.4039

    Google Scholar 

  149. H. Wanatanbe, D. Takeuchi, S. Yamanaka, H. Okushi, K. Kajimura, T. Sekiguchi, Homoepitaxial diamond film with an atomically flat surface over a large area. Diam. Relat. Mater. 8(7), 1272 (1999). doi:10.1016/S0925-9635(99)00126-0

    Google Scholar 

  150. N. Tokuda, H. Umezawa, S. Ri, M. Ogura, K. Yamabe, H. Okushi, S. Yamasaki, Atomically flat diamond (111) surface formation by homoepitaxial lateral growth. Diam. Relat. Mater. 17(7–10), 1051–1054 (2008). doi:10.1016/j.diamond.2008.01.089

    Google Scholar 

  151. N. Tokuda, H. Umezawa, H. Kato, M. Ogura, S. Gonda, K. Yamabe, H. Okushi, S. Yamasaki, Nanometer scale height standard using atomically controlled diamond surface. Appl. Phys. Express 2(5), 055001 (2009). doi:10.1143/APEX.2.055001

    Google Scholar 

  152. D. Lee, J.M. Blakely, T.W. Schroeder, J.R. Engstrom, A growth method for creating arrays of atomically flat mesas on silicon. Appl. Phys. Lett. 78(10), 1349–1351 (2001). doi:10.1063/1.1352656

    Google Scholar 

  153. T. Nishida, N. Kobayashi, Step-free surface grown on GaAs (111) B substrate by selective area metalorganic vapor phase epitaxy. Appl. Phys. Lett. 69(17), 2549–2550 (1996). doi:10.1063/1.117735

    Google Scholar 

  154. T. Nishida, N. Kobayashi, Formation of a 100-μm-wide stepfree GaAs (111)B surface obtained by finite area metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys. 37(1A/B, Part 2), L13–L14 (1998). doi:10.1143/JJAP.37.L13

    Google Scholar 

  155. J.A. Powell, P.G. Neudeck, A.J. Trunek, G.M. Beheim, L.G. Matus, R.W. Hoffman Jr., L.J. Keys, Growth of step-free surfaces on device-size (0001)SiC mesas. Appl. Phys. Lett. 77(10), 1449–1451 (2000). doi:10.1063/1.1290717

    Google Scholar 

  156. T. Akasaka, Y. Kobayashi, M. Kasu, Step-free GaN hexagons grown by selective-area metalorganic vapor phase epitaxy. Appl. Phys. Express 2(9), 091002 (2009). doi:10.1143/APEX.2.091002

    Google Scholar 

  157. C.E. Nebel, C.R. Miskys, J.A. Garrido, M. Hermann, O. Ambacher, M. Eickoff, M. Stutzmann, AlN/diamond np-junctions. Diam. Relat. Mater. 12(10–11), 1873–1876 (2003). doi:10.1016/S0925-9635(03)00313-3

    Google Scholar 

  158. C.R. Miskys, J.A. Garrido, C.E. Nebel, M. Hermann, O. Ambacher, M. Eickhoff, M. Stutzmann, AlN/diamond heterojunction diodes. Appl. Phys. Lett. 82(2), 290–292 (2003). doi:10.1063/1.1532545

    Google Scholar 

  159. Y. Taniyasu, M. Kasu, MOVPE growth of single-crystal hexagonal AlN on cubic diamond. J. Cryst. Growth 311(10), 2828–2830 (2009). doi:10.1016/j.jcrysgro.2009.01.021

    Google Scholar 

  160. K. Hirama, Y. Taniyasu, M. Kasu, Heterostructure growth of a single-crystal hexagonal AlN (0001) layer on cubic diamond (111) surface. J. Appl. Phys. 108(1), 013528 (2010). doi:10.1063/1.3452362

    Google Scholar 

  161. M. Imura, K. Nakajima, M. Liao, Y. Koide, Growth mechanism of c-axis-oriented AlN on (111) diamond substrates by metal-organic vapor phase epitaxy. J. Cryst. Growth 312(8), 1325–1328 (2010). doi:10.1016/j.jcrysgro.2009.09.020

    Google Scholar 

  162. K. Hirama, Y. Taniyasu, M. Kasu, Hexagonal AlN(0001) heteroepitaxial growth on cubic diamond (001). Jpn. J. Appl. Phys. 49(4s), 04DH01 (2010). doi:10.1143/JJAP.49.04DH01

  163. S. Tanaka, R.S. Kern, R.F. Davis, Initial stage of aluminum nitride film growth on 6H-silicon carbide by plasma-assisted, gas-source molecular beam epitaxy. Appl. Phys. Lett. 66(1), 37 (1995). doi:10.1063/1.114173

    Google Scholar 

  164. J.A. Powell, J.B. Petit, J.H. Edgar, I.G. Jenkins, L.G. Matus, J.W. Yang, P. Pirouz, W.J. Choyke, L. Cleman, M. Yoganathan, Controlled growth of 3C-SiC and 6H-SiC films on low-tilt-angle vicinal (0001) 6H-SiC wafers. Appl. Phys. Lett. 59(3), 333–335 (1991). doi:10.1063/1.105587

    Google Scholar 

  165. T. Ouisse, Electron transport at the SiC/SiO2 interface. Phys. Status Solidi A 162(1), 339–368 (1997). doi:10.1002/1521-396X(199707)162:1<339::AID-PSSA339>3.0.CO;2-G

    Google Scholar 

  166. N.D. Bassim, M.E. Twigg, C.R. Eddy Jr., J.C. Culbertson, M.A. Mastro, R.L. Henry, R.T. Holm, P.G. Neudeck, A.J. Trunek, J.A. Powell, Lowered dislocation densities in uniform GaN layers grown on step-free (0001) 4H-SiC mesa surfaces. Appl. Phys. Lett. 86(2), 021902 (2005). doi:10.1063/1.1849834

    Google Scholar 

  167. J.D. Caldwll, M.A. Mastro, K.D. Hobart, O.J. Glembocki, C.R. Eddy Jr., N.D. Bassim, R.T. Holm, R.L. Henry, M.E. Twigg, F. Kub, P.G. Neudeck, A.J. Trunek, J.A. Powell, Improved ultraviolet emission from reduced defect gallium nitride homojunctions grown on step-free 4H-SiC mesas. Appl. Phys. Lett. 88(26), 263509 (2006). doi:10.1063/1.2218045

    Google Scholar 

Download references

Acknowledgments

The author sincerely thanks Prof. Satoshi Yamasaki, Dr. Hideyo Okushi, Dr. Daisuke Takeuchi, Dr. Masahiko Ogura, Dr. Toshiharu Makino, Dr. Hiromitsu Kato, Dr. Hitoshi Umezawa, Dr. Takehide Miyazaki of the National Institute of Advanced Industrial Science and Technology; Dr. Sung-Gi Ri of the National Institute for Materials Science; and Professor Takao Inokuma of Kanazawa University for fruitful discussions. This study was partly supported by a Grant-in-Aid for Young Scientists (A) (No. 24686074) from the Japan Society for the Promotion of Science, and Adaptable and Seamless Technology Transfer Program (A-STEP) and Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Tokuda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tokuda, N. (2015). Homoepitaxial Diamond Growth by Plasma-Enhanced Chemical Vapor Deposition. In: Yang, N. (eds) Novel Aspects of Diamond. Topics in Applied Physics, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-09834-0_1

Download citation

Publish with us

Policies and ethics