Skip to main content
Log in

Structure, Magnetocaloric Effect and Critical Behaviour in Ni50Mn30(Sn,In)20 Heusler Alloys

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

A detailed investigation of structure, critical behaviour and magnetocaloric properties of Ni50Mn30Sn20 (Sn20) and Ni50Mn30In20 (In20) alloys has been investigated by means of X-ray diffraction and magnetic measurements. Ni50Mn30Sn20 alloy shows a cubic austenite L21 structure and undergoes a second order magnetic transition at a Curie temperature of \( {T}_{\mathrm{c},1}^{\mathrm{A}}(Sn20)=333\ \mathrm{K} \). However, the Ni50Mn30In20 alloy exhibits a mixture of cubic L21 and B2 austenite structures having Curie temperatures of \( {T}_{\mathrm{c},2}^{\mathrm{A}}(In20)=285\ \mathrm{K} \) and \( {T}_{\mathrm{c}}^{\ast }(In20)=330\ K \), respectively. The modified Arrott plots, Kouvel-Fisher curves and critical isotherm analysis have been used to estimate the critical exponents (β, γ and δ) around the Curie temperature. For Sn20 alloy, the reliable exponents are consistent with the mean field model, revealing long-range ferromagnetic interactions. Nevertheless, the critical exponents of In20 alloy around 330 K cannot be arranged into any of the universality classes of well-known classical standard models. The maximum entropy change under 5 T of Sn20 (\( \Delta {S}_{\mathrm{M}}^{\mathrm{max}}=2.43\frac{J}{\mathrm{kg}}.\mathrm{K} \)) is slightly higher than that of In20 (\( \Delta {S}_{\mathrm{M}}^{\mathrm{max}}=2.05\frac{J}{\mathrm{kg}}.K \)). The experimental results of entropy changes are in good agreement with those calculated using Landau theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Tadaki, T., Otsuka, K., Shimizu, K.: Shape memory alloys. Annu. Rev. Mater. Sci. 18, 25–45 (1988)

    Article  ADS  Google Scholar 

  2. Otsuka, K., Ren, X.: Recent developments in the research of shape memory alloys. Intermetallics. 7, 511–528 (1999)

    Article  Google Scholar 

  3. K. Sattler, Handbook of nanophysics: functional nanomaterials. 2010

    Book  Google Scholar 

  4. Topkaya, R., Yilgin, R., Kazan, S., Akdoğan, N., Obaida, M., İnam, H., Westerholt, K.: Annealing effect on structural and magnetic properties of Cu2MnAl Heusler alloy films. J. Supercond. Nov. Magn. 25, 2605–2609 (2012)

    Article  Google Scholar 

  5. Wang, L.Y., Wang, X.T., Chen, L., Zhang, Y., Xia, Q.L., Liu, G.D.: The synthesis and martensitic transformation of the Co2TiSb1−xSnx(x = 0, 0.25, 0.5) Heusler alloys. J. Supercond. Nov. Magn. 29, 995–1000 (2016)

    Article  Google Scholar 

  6. Jain, V.K., Nambakkat, L., Jain, R., Chandra, A.R.: Electronic structure, elastic, magnetic, and optical properties of Fe2MnZ (Z = Si, Ge, and Sn) full Heusler alloys: first-principle calculations. J. Supercond. Nov. Magn. 32, 739–749 (2019)

    Article  Google Scholar 

  7. Mokhtari, D., Baaziz, H., Guendouz, D.J., Charifi, Z., Hamad, B.: Theoretical investigation of structural, electronic, magnetic, and mechanical properties of quaternary Heusler alloys CoVTiX (X = As, Si). J. Supercond. Nov. Magn. 31, 3625–3636 (2018)

    Article  Google Scholar 

  8. Çakır, A., Acet, M., Farle, M.: Exchange bias caused by field-induced spin reconfiguration in Ni-Mn-Sn. Phys. Rev. B. 93, 094411 (2016)

    Article  ADS  Google Scholar 

  9. Ghosh, A., Mandal, K.: Large magnetic entropy change and magnetoresistance associated with a martensitic transition of Mn-rich Mn50.5−xNi41Sn8.5+x alloys. J. Phys. D. Appl. Phys. 46, 435001 (2013)

    Article  ADS  Google Scholar 

  10. Huang, L., Cong, D.Y., Ma, L., Nie, Z.H., Wang, M.G., Wang, Z.L., Suo, H.L., Ren, Y., Wang, Y.D.: Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. J. Alloys Compd. 647, 1081–1085 (2015)

    Article  Google Scholar 

  11. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450 (2005)

    Article  ADS  Google Scholar 

  12. Hernando, B., Llamazares, J.L.S., Santos, J.D., Prida, V.M., Baldomir, D., Serantes, D., Varga, R., González, J.: Magnetocaloric effect in melt spun Ni50.3Mn35.5Sn14.4 ribbons. Appl. Phys. Lett. 92, 132507 (2008)

    Article  ADS  Google Scholar 

  13. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A., Suard, E., Ouladdiaf, B.: Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In. Phys. Rev. B. 75, 104414 (2007)

    Article  ADS  Google Scholar 

  14. Porcar, L., Bourgault, D., Courtois, P.: Large piezoresistance and magnetoresistance effects on Ni45Co5Mn37.5In12.5 single crystal. Appl. Phys. Lett. 100, 152405 (2012)

    Article  ADS  Google Scholar 

  15. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni-Mn-Sn alloys. Phys. Rev. B. 72, 014412 (2005)

    Article  ADS  Google Scholar 

  16. Çakır, A., Righi, L., Albertini, F., Acet, M., Farle, M.: Intermartensitic transitions and phase stability in Ni50Mn50-xSnx Heusler alloys. Acta Mater. 99, 140–149 (2015)

    Article  Google Scholar 

  17. Yuhasz, W.M., Schlagel, D.L., Xing, Q., McCallum, R.W., Lograsso, T.: Metastability of ferromagnetic Ni–Mn–Sn Heusler alloys. J. Alloys Compd. 492, 681–684 (2010)

    Article  Google Scholar 

  18. Yin, M., Nash, P., Chen, W., Chen, S.: Standard enthalpies of formation of selected Ni2YZ Heusler compounds. J. Alloys Compd. 660, 258–265 (2016)

    Article  Google Scholar 

  19. Lazpita, P., Chernenko, V., Barandiarán, J.M., Orue, I., Gutiérrez, J., Feuchtwanger, J., Rodriguez-Velamazán, J.A.: Influence of magnetic field on magnetostructural transition in Ni 46.4 Mn 32.8 Sn 20.8 Heusler Alloy. Mater. Sci. Forum. 635, 89–95 (2009)

    Article  Google Scholar 

  20. Bhatt, R.C., Meena, R.S., Kishan, H., Awana, V.P.S., Agarwal, S.K.: Structural, magnetic and magneto-caloric studies of Ni50Mn30Sn20Shape Memory Alloy. J. Superconduct. Novel. Mater. 29, 3201–3206 (2016)

    Article  Google Scholar 

  21. Llamazares, J.L.S., Sanchez, T., Santos, J.D., Pérez, M.J., Sanchez, M.L., Hernando, B., Escoda, L., Suñol, J.J., Varga, R.: Martensitic phase transformation in rapidly solidified Mn50Ni40In10 alloy ribbons. Appl. Phys. Lett. 92, 012513 (2008)

    Article  ADS  Google Scholar 

  22. Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., Oikawa, K.: Magnetic and martensitic transformations of NiMnX, (X=In,Sn,Sb) ferromagnetic shape memory alloys. Appl. Phys. Lett. 85, 4358–4360 (2004)

    Article  ADS  Google Scholar 

  23. Krenke, T., Acet, M., Wassermann, E.F., Moya, X., Mañosa, L., Planes, A.: Ferromagnetism in the austenitic and martensitic states of Ni-Mn-In alloys. Phys. Rev. B. 73, 174413 (2006)

    Article  ADS  Google Scholar 

  24. Huang, K. (ed.): Statistical mechanics, 2 edn. Wiley, New York (1987)

  25. Lutterotti, L., Matthies, S., Wenk, H.R.: MAUD: a friendly Java program for material analysis using diffraction. Newslett. CPD. 21, 14–15 (1999)

    Google Scholar 

  26. Çakır, A., Acet, M., Wiedwald, U., Krenke, T., Farle, M.: Shell-ferromagnetic precipitation in martensitic off-stoichiometric Ni-Mn-In Heusler alloys produced by temper-annealing under magnetic field. Acta Mater. 127, 117–123 (2017)

    Article  Google Scholar 

  27. Sánchez Llamazares, J.L., Flores-Zuñiga, H., Sánchez-Valdes, C., Ross, C.A., García, C.: Refrigerant capacity of austenite in as-quenched and annealed Ni51.1Mn31.2In17.7 melt spun ribbons. J. Appl. Phys. 111, 07A932 (2012)

    Article  Google Scholar 

  28. Sanchez, T., Llamazares, J.L.S., Hernando, B., Santos, J.D., Sanchez, M.I., Perez, M.J., Suñol, J.J., Turtelli, R., Grössinger, R.: Annealing effect on martensitic transformation and magneto-structural properties of Ni-Mn-In melt spun ribbons. Mater. Sci. Forum. 635, 81–87 (2009)

    Article  Google Scholar 

  29. Dadda, K., Alleg, S., Souilah, S., Suňol, J.J., Dhahri, E., Bessais, L., Hlil, E.K.: Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons. J. Alloys Compd. 735, 1662–1672 (2018)

    Article  Google Scholar 

  30. Amaral, V.S., Amaral, J.S.: Magnetoelastic coupling influence on the magnetocaloric effect in ferromagnetic materials. J. Magn. Magn. Mater. 272-276, 2104–2105 (2004)

    Article  ADS  Google Scholar 

  31. Landau, L.D., Lifshitz, E.M.: Statistical Physics part 2. In: Library, P.I. (ed.) Course of theoritical physics. M. C. Robert Maxwell, Oxford (1958)

    Google Scholar 

  32. Arrott, A.: Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108(6), 1394–1396 (1957)

    Article  ADS  Google Scholar 

  33. Fisher, M.E., Shang-keng, M.A., Nickel, B.G.: Critical exponents for long-range interactions. Phys. Rev. Lett. 29, 917–920 (1972)

    Article  ADS  Google Scholar 

  34. Kouvel, J.S., Fisher, M.E.: Detailed magnetic behavior of nickel near its Curie point. Phys. Rev. 136, A 1626 (1964)

    Article  ADS  Google Scholar 

  35. Widom, B.: Surface tension and molecular correlations near the critical point. J. Chem. Phys. 43, 3892–3897 (1965)

    Article  ADS  Google Scholar 

  36. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, London (1971)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the DGRSDT/MESRS Algeria, PHC-Maghreb 15 MAG07, Spanish MINECO projects MAT2013-47231-C2-2-P and MAT2016-75967-P, and the Erasmus+k107 STA program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Alleg.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dadda, K., Alleg, S., Suñol, J.J. et al. Structure, Magnetocaloric Effect and Critical Behaviour in Ni50Mn30(Sn,In)20 Heusler Alloys. J Supercond Nov Magn 33, 2209–2218 (2020). https://doi.org/10.1007/s10948-020-05485-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05485-3

Keywords

Navigation