Skip to main content
Log in

In vitro assessment of plasma-sprayed reinforced hydroxyapatite coatings deposited on Ti6Al4V alloy for bio-implant applications

  • Article
  • FOCUS ISSUE: Advances in Titanium Bio-Implants
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This research presents the basic in vitro assessment of bare Ti6Al4V alloy, hydroxyapatite (HA), and calcium silicate (CS)-reinforced HA coatings. The weight percentage of CS reinforcement in HA was varied as the HA–x%CS (x = 0, 10, and 20 wt %). The phase compositions, coating’s microstructure, chemical properties, microhardness, porosity, surface roughness, and in vitro studies were performed. The HA–10%CS and HA–20%CS coatings displayed the crack-free morphology, whereas microcracks were observed over the surface of pure HA coating. With the progressive increment of CS content in HA, crystallinity, surface roughness, porosity, microhardness, and Young’s modulus for HA–10%CS and HA–20%CS coatings increased compared to pure HA coating. The HA–10%CS and HA–20%CS coatings were more conducive and displayed superior hemocompatibility than HA. The HA–10%CS and HA–20%CS coatings exhibited no adverse effects on the erythrocytes, and the hemolysis rate (HR) was within the domain of safe value (< 5%) for implant materials. The findings of this study indicate that surface modification of Ti6Al4V alloy with HA–10%CS and HA–20%CS coatings is a promising approach to improve the performance for bio-implant applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Talha, C.K. Behera, O.P. Sinha, A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater. Sci. Eng. C 33, 3563–3575 (2013). https://doi.org/10.1016/j.msec.2013.06.002

    Article  CAS  Google Scholar 

  2. G. Singh, T.R. Ablyaz, E.S. Shlykov, K.R. Muratov, A.S. Bhui, S.S. Sidhu, Enhancing corrosion and wear resistance of Ti6Al4V alloy using CNTs mixed electro-discharge process. Micromachines (2020). https://doi.org/10.3390/MI11090850

    Article  Google Scholar 

  3. A.S. Bhui, G. Singh, S.S. Sidhu, P.S. Bains, Experimental investigation of optimal ed machining parameters for Ti-6Al-4V biomaterial. Facta Univ. Ser. Mech. Eng. 16, 337–345 (2018). https://doi.org/10.22190/FUME180824033B

    Article  Google Scholar 

  4. G. Singh, S.S. Sidhu, P.S. Bains, M. Singh, A.S. Bhui, On surface modification of Ti alloy by electro discharge coating using hydroxyapatite powder mixed dielectric with graphite tool. J. Bio- Tribo-Corros. (2020). https://doi.org/10.1007/s40735-020-00389-0

    Article  Google Scholar 

  5. R. Balokhonov, V. Romanova, A. Panin, S. Martynov, M. Kazachenok, Numerical study of stress–strain localization in the titanium surface modified by an electron beam treatment. Facta Univ. Ser. Mech. Eng. 14, 329–334 (2016). https://doi.org/10.22190/FUME1603329B

    Article  Google Scholar 

  6. R. Kumari, J. Dutta, Studies on corrosion resistance and bio-activity of plasma spray deposited hydroxylapatite (HA) based TiO2 and ZrO2 dispersed composite coatings on titanium alloy (Ti-6Al-4V) and the same after post spray heat treatment. Appl. Surf. Sci. 420, 935–943 (2017). https://doi.org/10.1016/j.apsusc.2017.05.208

    Article  CAS  Google Scholar 

  7. J. Singh, S.S. Chatha, H. Singh, Synthesis and characterization of plasma sprayed functional gradient bioceramic coating for medical implant applications. Ceram. Int. 47, 9143–9155 (2021). https://doi.org/10.1016/j.ceramint.2020.12.039

    Article  CAS  Google Scholar 

  8. J. Singh, S. Singh, H. Singh, Characterization and corrosion behavior of functional gradient hydroxyapatite coating. J. Therm. Spray Technol. (2018). https://doi.org/10.1007/s11666-018-0802-3

    Article  Google Scholar 

  9. X. Zhang, W. Chaimayo, C. Yang, J. Yao, B.L. Miller, M.Z. Yates, Surface & coatings technology silver-hydroxyapatite composite coatings with enhanced antimicrobial activities through heat treatment. Surf. Coat. Technol. 325, 39–45 (2017). https://doi.org/10.1016/j.surfcoat.2017.06.013

    Article  CAS  Google Scholar 

  10. Y. Yang, Y. Wang, W. Tian, D. Ran Yan, J. Xin Zhang, L. Wang, Influence of composite powders’ microstructure on the microstructure and properties of Al2O3–TiO2 coatings fabricated by plasma spraying. Mater. Design 65, 814–822 (2015). https://doi.org/10.1016/j.matdes.2014.09.078

    Article  CAS  Google Scholar 

  11. V.F. Shamray, V.P. Sirotinkin, V.I. Kalita, V.S. Komlev, S.M. Barinov, A.Y. Fedotov, A.S. Gordeev, Study of the crystal structure of hydroxyapatite in plasma coating. Surf. Coat. Technol. 372, 201–208 (2019). https://doi.org/10.1016/j.surfcoat.2019.05.037

    Article  CAS  Google Scholar 

  12. E. Canas, M.J. Orts, A.R. Boccaccini, E. Sanchez, Microstructural and in vitro characterization of 45S5 bioactive glass coatings deposited by solution precursor plasma spraying (SPPS). Surf. Coat. Technol. 371, 151–160 (2019). https://doi.org/10.1016/j.surfcoat.2018.12.057

    Article  CAS  Google Scholar 

  13. S. Yang, H.C. Man, W. Xing, X. Zheng, Adhesion strength of plasma-sprayed hydroxyapatite coatings on laser gas-nitrided pure titanium. Surf. Coat. Technol. 203, 3116–3122 (2009). https://doi.org/10.1016/j.surfcoat.2009.03.034

    Article  CAS  Google Scholar 

  14. X. Zhao, X. Liu, J. You, Z. Chen, C. Ding, Bioactivity and cytocompatibility of plasma-sprayed titania coating treated by sulfuric acid treatment. Surf. Coat. Technol. 202, 3221–3226 (2008). https://doi.org/10.1016/j.surfcoat.2007.11.026

    Article  CAS  Google Scholar 

  15. V. Koshuro, A. Fomin, I. Rodionov, Composition, structure and mechanical properties of metal oxide coatings produced on titanium using plasma spraying and modified by micro-arc oxidation. Ceram. Int. 44, 12593–12599 (2018). https://doi.org/10.1016/j.ceramint.2018.04.056

    Article  CAS  Google Scholar 

  16. A. Singh, G. Singh, V. Chawla, Characterization and mechanical behavior of reinforced hydroxyapatite coatings deposited by vacuum plasma spray on SS-316L alloy. J. Mech. Behav. Biomed. Mater. 79, 273–282 (2018). https://doi.org/10.1016/j.jmbbm.2018.01.005

    Article  CAS  Google Scholar 

  17. R. Kumari, J. Dutta, Materials Characterization Microstructure and surface mechanical properties of plasma spray deposited and post spray heat treated hydroxyapatite (HA) based composite coating on titanium alloy (Ti-6Al-4V) substrate. Mater. Charact. 131, 12–20 (2017). https://doi.org/10.1016/j.matchar.2017.06.011

    Article  CAS  Google Scholar 

  18. J. Singh, S. Singh, H. Singh, Effect of Various Additives on Mechanical and Biological Properties of Hydroxyapatite Coating, (2017), pp. 290–293

  19. S. Singh, C. Prakash, H. Singh, Deposition of HA–TiO2 by plasma spray on β-phase Ti–35Nb–7Ta–5Zr alloy for hip stem: characterization, mechanical properties, corrosion, and in-vitro bioactivity. Surf. Coat. Technol. 398, 126072 (2020). https://doi.org/10.1016/j.surfcoat.2020.126072

    Article  CAS  Google Scholar 

  20. G. Singh, H. Singh, B. Singh, Characterization and corrosion resistance of plasma sprayed HA and HA–SiO2 coatings on Ti–6Al–4V. Surf. Coat. Technol. 228, 242–247 (2013). https://doi.org/10.1016/j.surfcoat.2013.04.036

    Article  CAS  Google Scholar 

  21. M. Mittal, S.K. Nath, S. Prakash, Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement. Mater. Sci. Eng. C 33, 2838–2845 (2013). https://doi.org/10.1016/j.msec.2013.03.005

    Article  CAS  Google Scholar 

  22. M. Mirzaee, M. Vaezi, Y. Palizdar, Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid. Mater. Sci. Eng. C 69, 675–684 (2016). https://doi.org/10.1016/j.msec.2016.07.057

    Article  CAS  Google Scholar 

  23. B. Singh, G. Singh, B.S. Sidhu, Analysis of corrosion behaviour and surface properties of plasma-sprayed composite coating of hydroxyapatite—tantalum on biodegradable Mg alloy ZK60. J. Compos. Mater. (2019). https://doi.org/10.1177/0021998319839127

    Article  Google Scholar 

  24. B. Singh, G. Singh, B. Singh, In vitro investigation of Nb-Ta alloy coating deposited on CoCr alloy for biomedical implants. Surf. Coat. Technol. 377, 124932 (2019). https://doi.org/10.1016/j.surfcoat.2019.124932

    Article  CAS  Google Scholar 

  25. B. Singh, G. Singh, B.S. Sidhu, Investigation of the in vitro corrosion behavior and biocompatibility of niobium (Nb)–reinforced hydroxyapatite (HA) coating on CoCr alloy for medical implants. J. Mater. Res. 34, 1–14 (2019). https://doi.org/10.1557/jmr.2019.94

    Article  CAS  Google Scholar 

  26. S. Liu, H. Li, Y. Su, Q. Guo, L. Zhang, Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites. Mater. Sci. Eng. C 70, 805–811 (2017). https://doi.org/10.1016/j.msec.2016.09.060

    Article  CAS  Google Scholar 

  27. H. Chen, E. Zhang, K. Yang, Microstructure, corrosion properties and bio-compatibility of calcium zinc phosphate coating on pure iron for biomedical application. Mater. Sci. Eng. C 34, 201–206 (2014). https://doi.org/10.1016/j.msec.2013.09.010

    Article  CAS  Google Scholar 

  28. H. Hu, Y. Qiao, F. Meng, X. Liu, C. Ding, Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium. Colloids Surf. B 101, 83–90 (2013). https://doi.org/10.1016/j.colsurfb.2012.06.021

    Article  CAS  Google Scholar 

  29. X. Liu, C. Ding, Characterization of plasma sprayed wollastonite powder and coatings. Surf. Coat. Technol. 153, 173–177 (2002). https://doi.org/10.1016/S0257-8972(01)01666-8

    Article  CAS  Google Scholar 

  30. X. Liu, C. Ding, Z. Wang, Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials 22, 2007–2012 (2001). https://doi.org/10.1016/S0142-9612(00)00386-0

    Article  CAS  Google Scholar 

  31. W. Xue, X. Liu, X. Zheng, C. Ding, In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials 26, 3455–3460 (2005). https://doi.org/10.1016/j.biomaterials.2004.09.027

    Article  CAS  Google Scholar 

  32. X. Liu, C. Ding, P.K. Chu, Mechanism of apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 25, 1755–1761 (2004). https://doi.org/10.1016/j.biomaterials.2003.08.024

    Article  CAS  Google Scholar 

  33. J. Singh, S.S. Chatha, H. Singh, Microstructural and in-vitro characteristics of functional calcium silicate topcoat on hydroxyapatite coating for bio-implant applications. Prog. Biomater. (2022). https://doi.org/10.1007/s40204-022-00183-w

    Article  Google Scholar 

  34. P. Tian, H. Hu, H. Wang, X. Liu, C. Ding, TiO2/CaF2 composite coating on titanium for biomedical application. Mater. Lett. 117, 98–100 (2014). https://doi.org/10.1016/j.matlet.2013.12.006

    Article  CAS  Google Scholar 

  35. M. Yusuf, A. Bakar, N. Muhamad, M. Rafi, Incorporation of wollastonite bioactive ceramic with titanium for medical applications: an overview. Mater. Sci. Eng. C 97, 884–895 (2019). https://doi.org/10.1016/j.msec.2018.12.056

    Article  CAS  Google Scholar 

  36. H.H. Beheri, K.R. Mohamed, G.T. El-bassyouni, Mechanical and microstructure of reinforced hydroxyapatite/calcium silicate nano-composites materials. Mater. Des. 44, 461–468 (2013). https://doi.org/10.1016/j.matdes.2012.08.020

    Article  CAS  Google Scholar 

  37. K. Lin, M. Zhang, W. Zhai, H. Qu, J. Changw, Fabrication and characterization of hydroxyapatite/wollastonite composite bioceramics with controllable properties for hard tissue repair. J. Am. Ceram. Soc. 105, 99–105 (2011). https://doi.org/10.1111/j.1551-2916.2010.04046.x

    Article  CAS  Google Scholar 

  38. A. Encinas-romero, S.R. Paya, Mechanical and bioactive behavior of hydroxyapatite—wollastonite sintered composites. Int. J. Appl. Ceram. Technol. 7, 164–177 (2010). https://doi.org/10.1111/j.1744-7402.2009.02377.x

    Article  CAS  Google Scholar 

  39. P. Feng, P. Wei, P. Li, C. Gao, C. Shuai, S. Peng, Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering (Elsevier, Amsterdam, 2014). https://doi.org/10.1016/j.matchar.2014.08.017

    Book  Google Scholar 

  40. S. Kunjalukkal, F. Gervaso, M. Carrozzo, F. Scalera, A. Sannino, A. Licciulli, Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram. Int. 39, 619–627 (2013). https://doi.org/10.1016/j.ceramint.2012.06.073

    Article  CAS  Google Scholar 

  41. K. Lin, J. Chang, X. Liu, C. Ning, Synthesis and characterization of nanocomposite powders composed of hydroxyapatite nanoparticles and wollastonite nanowires. Appl. Ceram. Technol. 183, 178–183 (2010). https://doi.org/10.1111/j.1744-7402.2009.02474.x

    Article  CAS  Google Scholar 

  42. R. Morsy, R. Abuelkhair, T. Elnimr, A facile route to the synthesis of hydroxyapatite/wollastonite composite powders by a two-step. Silicon (2015). https://doi.org/10.1007/s12633-015-9339-y

    Article  Google Scholar 

  43. A. Encinas-romero, S. Aguayo-salinas, F.F. Castillo, Synthesis and characterization of hydroxyapatite—wollastonite composite powders by sol–gel processing. Appl. Ceram. Technol. 5, 401–411 (2008). https://doi.org/10.1111/j.1744-7402.2008.02212.x

    Article  CAS  Google Scholar 

  44. A.P. Solonenko, A.I. Blesman, D.A. Polonyankin, Materials characterization poorly crystallized hydroxyapatite and calcium silicate hydrate composites: synthesis, characterization and soaking in simulated body fluid. Mater. Charact. 161, 110158 (2020). https://doi.org/10.1016/j.matchar.2020.110158

    Article  CAS  Google Scholar 

  45. Y. Huang, H. Zhang, H. Qiao, X. Nian, X. Zhang, Anticorrosive effects and in vitro cytocompatibility of calcium silicate/zinc-doped hydroxyapatite composite coatings on titanium. Appl. Surf. Sci. 357, 1776–1784 (2015). https://doi.org/10.1016/j.apsusc.2015.10.034

    Article  CAS  Google Scholar 

  46. B. Singh, G. Singh, B. Singh, N. Bhatia, In-vitro assessment of HA–Nb coating on Mg alloy ZK60 for biomedical applications. Mater. Chem. Phys. 231, 138–149 (2019). https://doi.org/10.1016/j.matchemphys.2019.04.037

    Article  CAS  Google Scholar 

  47. D.Q. Pham, C.C. Berndt, U. Gbureck, H. Zreiqat, V.K. Truong, A.S.M. Ang, Mechanical and chemical properties of Baghdadite coatings manufactured by atmospheric plasma spraying. Surf. Coat. Technol. 378, 124945 (2019). https://doi.org/10.1016/j.surfcoat.2019.124945

    Article  CAS  Google Scholar 

  48. X. Chen, B. Zhang, Y. Gong, P. Zhou, H. Li, Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying. Appl. Surf. Sci. 439, 60–65 (2018). https://doi.org/10.1016/j.apsusc.2018.01.014

    Article  CAS  Google Scholar 

  49. X. Liu, D. He, Z. Zhou, G. Wang, Z. Wang, X. Guo, Effect of post-heat treatment on the microstructure of micro-plasma sprayed hydroxyapatite coatings. Surf. Coat. Technol. 367, 225–230 (2019). https://doi.org/10.1016/j.surfcoat.2019.03.056

    Article  CAS  Google Scholar 

  50. X. Liu, C. Ding, Phase compositions and microstructure of plasma sprayed wollastonite coating. Surf. Coat. Technol. 141, 269–274 (2001). https://doi.org/10.1016/S0257-8972(01)01169-0

    Article  CAS  Google Scholar 

  51. W. Wang, J. Liang, X. Guo, F. Xuan, H. Hong, Mechanical properties and dissolution behavior of plasma sprayed wollastonite coatings deposited at different substrate temperatures. J. Therm. Spray Technol. 21, 496–504 (2012). https://doi.org/10.1007/s11666-011-9699-9

    Article  CAS  Google Scholar 

  52. S. Mohajernia, S. Pour-Ali, S. Hejazi, M. Saremi, A.R. Kiani-Rashid, Hydroxyapatite coating containing multi-walled carbon nanotubes on AZ31 magnesium: mechanical-electrochemical degradation in a physiological environment. Ceram. Int. 44, 8297–8305 (2018). https://doi.org/10.1016/j.ceramint.2018.02.015

    Article  CAS  Google Scholar 

  53. G. Singh, S. Singh, S. Prakash, Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy. Surf. Coat. Technol. 205, 4814–4820 (2011). https://doi.org/10.1016/j.surfcoat.2011.04.064

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support provided to this research by the University Grant Commission, New Delhi, India, under Grant Number RGNF-2013-14-SC-PUN-52049. The authors additionally thank Clarion pharmaceutical ltd., India and wolkem, ltd., India, for providing the HA and CS powders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jarnail Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interest or personal relationships that could have influenced the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Chatha, S.S. & Singh, H. In vitro assessment of plasma-sprayed reinforced hydroxyapatite coatings deposited on Ti6Al4V alloy for bio-implant applications. Journal of Materials Research 37, 2623–2634 (2022). https://doi.org/10.1557/s43578-022-00549-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-022-00549-7

Keywords

Navigation