Skip to main content
Log in

Process and characterization of ohmic contacts for beta-phase gallium oxide

  • Invited Feature Paper-Review
  • Focus Issue: Ultra-wide Bandgap Materials, Devices, and Systems
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

β-Ga2O3 is a promising material for next-generation power devices because of its ultra-wide bandgap, the commercial availability of bulk substrates, epitaxial growth, and ease of n-type doping. To fully exploit its potential, it is critical to establish fabrication processes to form low-resistance ohmic contacts with excellent long-term stability. Due to upward band bending and unavoidable redox reactions occurring at the contact interface, making a good ohmic contact to gallium oxide can be challenging. Herein, we use a process-structure-property approach to systematically review the reported processes for ohmic contact formation on gallium oxide, the contact microstructure, and the resulting electrical properties including charge transport physics. Furthermore, we describe the present evidence for ohmic contact stability under accelerated aging. Using thermodynamic assessment, we propose alternate ohmic contact materials candidates. Finally, we identify gaps in the scientific knowledge on ohmic contacts to Ga2O3 and highlight opportunities for future investigations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Adapted from Refs. [42, 43].

Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Copyright 2020 American Chemical Society.

Figure 10
Figure 11

Copyright 2020 American Chemical Society.

Figure 12

Similar content being viewed by others

References

  1. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro, A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5(1), 011301 (2018)

    Article  Google Scholar 

  2. M. Higashiwaki, G.H. Jessen, Guest editorial: the dawn of gallium oxide microelectronics. Appl. Phys. Lett. 112(6), 060401 (2018)

    Article  Google Scholar 

  3. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi, Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn. J. Appl. Phys. 47(11), 8506 (2008)

    Article  CAS  Google Scholar 

  4. E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose, Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 270(3–4), 420 (2004)

    Article  CAS  Google Scholar 

  5. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann, On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth 404, 184 (2014)

    Article  CAS  Google Scholar 

  6. A.J. Green, K.D. Chabak, E.R. Heller, R.C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S.E. Tetlak, A. Crespo, K. Leedy, G.H. Jessen, 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett. 37(7), 902 (2016)

    Article  Google Scholar 

  7. W. Li, K. Nomoto, Z. Hu, T. Nakamura, D. Jena, H.G. Xing, Single and multi-fin normally-off Ga2O3 vertical transistors with a breakdown voltage over 2.6 kV. in 2019 IEEE Int. Electron Devices Meet. (IEDM) (IEEE, 2019), pp. 12.4.1–12.4.4

  8. Q.Z. Liu, S.S. Lau, A review of the metal-GaN contact technology. Solid-State Electron. 42(5), 677 (1998)

    Article  CAS  Google Scholar 

  9. G. Greco, F. Iucolano, F. Roccaforte, Ohmic contacts to gallium nitride materials. Appl. Surf. Sci. 383, 324 (2016)

    Article  CAS  Google Scholar 

  10. L.M. Porter, R.F. Davis, A critical review of ohmic and rectifying contacts for silicon carbide. Mater. Sci. Eng. B 34(2–3), 83 (1995)

    Article  Google Scholar 

  11. A. Itoh, H. Matsunami, Analysis of Schottky barrier heights of metal/SiC contacts and its possible application to high-voltage rectifying devices. Phys. Status Solidi A 162(1), 389 (1997)

    Article  CAS  Google Scholar 

  12. Z. Wang, W. Liu, C. Wang, Recent progress in ohmic contacts to silicon carbide for high-temperature applications. J. Electron. Mater. 45(1), 267 (2016)

    Article  CAS  Google Scholar 

  13. T. Yoshida, T. Egawa, Role of thin Ti layer in formation mechanism of low temperature-annealed Ti/Al-based ohmic contact on AlGaN/GaN heterostructure. Semicond. Sci. Technol. 33(7), 075006 (2018)

    Article  Google Scholar 

  14. R. Gong, J. Wang, Z. Dong, S. Liu, M. Yu, C.P. Wen, Y. Hao, B. Shen, Y. Cai, B. Zhang, J. Zhang, Analysis on the new mechanisms of low resistance stacked Ti/Al Ohmic contact structure on AlGaN/GaN HEMTs. J. Phys. Appl. Phys. 43(39), 395102 (2010)

    Article  Google Scholar 

  15. S. Arulkumaran, G.I. Ng, K. Ranjan, C.M.M. Kumar, S.C. Foo, K.S. Ang, S. Vicknesh, S.B. Dolmanan, T. Bhat, S. Tripathy, Record-low contact resistance for InAlN/AlN/GaN high electron mobility transistors on Si with non-gold metal. Jpn. J. Appl. Phys. 54(4S), 04DF12 (2015)

    Article  Google Scholar 

  16. B. Van Daele, G. Van Tendeloo, W. Ruythooren, J. Derluyn, M.R. Leys, M. Germain, The role of Al on Ohmic contact formation on n-type GaN and AlGaN∕GaN. Appl. Phys. Lett. 87(6), 061905 (2005)

    Article  Google Scholar 

  17. J.-J. Chen, S. Jang, T.J. Anderson, F. Ren, Y. Li, H.-S. Kim, B.P. Gila, D.P. Norton, S.J. Pearton, Low specific contact resistance Ti∕Au contacts on ZnO. Appl. Phys. Lett. 88(12), 122107 (2006)

    Article  Google Scholar 

  18. T.E. Murphy, J.O. Blaszczak, K. Moazzami, W.E. Bowen, J.D. Phillips, Properties of electrical contacts on bulk and epitaxial n-type ZnO. J. Electron. Mater. 34(4), 389 (2005)

    Article  CAS  Google Scholar 

  19. J.H. Kim, J.Y. Moon, H.S. Lee, W.S. Han, H.K. Cho, J.Y. Lee, H.S. Kim, Al/Au ohmic contact to n-ZnO by dc sputtering. Mater. Sci. Eng. B 165(1–2), 77 (2009)

    Article  CAS  Google Scholar 

  20. H.-K. Kim, K.-K. Kim, S.-J. Park, T.-Y. Seong, I. Adesida, Formation of low resistance nonalloyed Al/Pt ohmic contacts on n-type ZnO epitaxial layer. J. Appl. Phys. 94(6), 4225 (2003)

    Article  CAS  Google Scholar 

  21. L.J. Brillson, Y. Lu, ZnO Schottky barriers and Ohmic contacts. J. Appl. Phys. 109(12), 121301 (2011)

    Article  Google Scholar 

  22. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Recent advances in processing of ZnO. J. Vac. Sci. Technol. B 22(3), 932 (2004)

    Article  CAS  Google Scholar 

  23. Y. Yao, R. Gangireddy, J. Kim, K.K. Das, R.F. Davis, L.M. Porter, Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J. Vac. Sci. Technol. B 35(3), 03D113 (2017)

    Article  Google Scholar 

  24. L.M. Porter, J.R. Hajzus, Perspectives from research on metal-semiconductor contacts: examples from Ga2O3, SiC, (nano)diamond, and SnS. J. Vac. Sci. Technol. A 38(3), 031005 (2020)

    Article  CAS  Google Scholar 

  25. E. Farzana, Z. Zhang, P.K. Paul, A.R. Arehart, S.A. Ringel, Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett. 110(20), 202102 (2017)

    Article  Google Scholar 

  26. R. Xu, N. Lin, Z. Jia, Y. Liu, H. Wang, Y. Yu, X. Zhao, First principles study of Schottky barriers at Ga2O3 (100)/metal interfaces. RSC Adv. 10(25), 14746 (2020)

    Article  CAS  Google Scholar 

  27. J.E.N. Swallow, J.B. Varley, L.A.H. Jones, J.T. Gibbon, L.F.J. Piper, V.R. Dhanak, T.D. Veal, Transition from electron accumulation to depletion at β-Ga2O3 surfaces: the role of hydrogen and the charge neutrality level. APL Mater. 7(2), 022528 (2019)

    Article  Google Scholar 

  28. T.C. Lovejoy, R. Chen, X. Zheng, E.G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S.T. Dunham, F.S. Ohuchi, M.A. Olmstead, Band bending and surface defects in β-Ga2O3. Appl. Phys. Lett. 100(18), 181602 (2012)

    Article  Google Scholar 

  29. J.B. Varley, J.R. Weber, A. Janotti, C.G. Van de Walle, Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett. 97(14), 142106 (2010)

    Article  Google Scholar 

  30. M.J. Tadjer, 10—Ohmic contacts to gallium oxide, in Gallium oxide. ed. by S. Pearton, F. Ren, M. Mastro (Elsevier, London, 2019), pp. 211–230

    Chapter  Google Scholar 

  31. B.J. Baliga, Fundamentals of Power Semiconductor Devices (Springer, New York, 2008)

    Book  Google Scholar 

  32. N.F. Mott, Note on the contact between a metal and an insulator or semi-conductor. Math. Proc. Camb. Philos. Soc. 34(4), 568 (1938)

    Article  CAS  Google Scholar 

  33. M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl. Phys. Lett. 101(13), 132106 (2012)

    Article  Google Scholar 

  34. S. Kurtin, T.C. McGill, C.A. Mead, Fundamental transition in the electronic nature of solids. Phys. Rev. Lett. 22(26), 1433 (1969)

    Article  CAS  Google Scholar 

  35. J. Bardeen, Surface states and rectification at a metal semi-conductor contact. Phys. Rev. 71(10), 717 (1947)

    Article  Google Scholar 

  36. W. Monch, On the physics of metal-semiconductor interfaces. Rep. Prog. Phys. 53(3), 221 (1990)

    Article  Google Scholar 

  37. H.L. Mosbacker, Y.M. Strzhemechny, B.D. White, P.E. Smith, D.C. Look, D.C. Reynolds, C.W. Litton, L.J. Brillson, Role of near-surface states in ohmic-Schottky conversion of Au contacts to ZnO. Appl. Phys. Lett. 87(1), 012102 (2005)

    Article  Google Scholar 

  38. W.M. Haynes, CRC Handbook of Chemistry and Physics, 96th edn. (CRC Press, Boca Raton, 2015)

    Google Scholar 

  39. M. Hirose, T. Nabatame, K. Yuge, E. Maeda, A. Ohi, N. Ikeda, Y. Irokawa, H. Iwai, H. Yasufuku, S. Kawada, M. Takahashi, K. Ito, Y. Koide, H. Kiyono, Influence of post-deposition annealing on characteristics of Pt/Al2O3/β-Ga2O3 MOS capacitors. Microelectron. Eng. 216, 111040 (2019)

    Article  CAS  Google Scholar 

  40. J.B. Goodenough, The two components of the crystallographic transition in VO2. J. Solid State Chem. 3(4), 490 (1971)

    Article  CAS  Google Scholar 

  41. Y. Yao, R.F. Davis, L.M. Porter, Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties. J. Electron. Mater. 46(4), 2053 (2017)

    Article  CAS  Google Scholar 

  42. W.E. Liu, S.E. Mohney, Condensed phase equilibria in transition metal–In–Sb systems and predictions for thermally stable contacts to InSb. Mater. Sci. Eng. B 103(2), 189 (2003)

    Article  Google Scholar 

  43. R. Beyers, K.B. Kim, R. Sinclair, Phase equilibria in metal-gallium-arsenic systems: thermodynamic considerations for metallization materials. J. Appl. Phys. 61(6), 2195 (1987)

    Article  CAS  Google Scholar 

  44. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, Materials design and discovery with high-throughput density functional theory: the Open Quantum Materials Database (OQMD). JOM 65(11), 1501 (2013)

    Article  CAS  Google Scholar 

  45. S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, C. Wolverton, The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. Npj Comput. Mater. 1(1), 15010 (2015)

    Article  CAS  Google Scholar 

  46. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Elsevier Butterworth-Heinemann, New York, 1997)

    Google Scholar 

  47. J. Shi, X. Xia, H. Liang, Q. Abbas, J. Liu, H. Zhang, Y. Liu, Low resistivity ohmic contacts on lightly doped n-type β-Ga2O3 using Mg/Au. J. Mater. Sci. Mater. Electron. 30(4), 3860 (2019)

    Article  CAS  Google Scholar 

  48. J. Ma, G. Yoo, Low subthreshold swing double-gate β-Ga2O3 field-effect transistors with polycrystalline hafnium oxide dielectrics. IEEE Electron Device Lett. 40(8), 1317 (2019)

    Article  CAS  Google Scholar 

  49. M. Higashiwaki, K. Sasaki, T. Kamimura, M. HoiWong, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103(12), 123511 (2013)

    Article  Google Scholar 

  50. M.-H. Lee, R.L. Peterson, Interfacial reactions of titanium/gold ohmic contacts with Sn-doped β-Ga2O3. APL Mater. 7(2), 022524 (2019)

    Article  Google Scholar 

  51. Y.-W. Huan, S.-M. Sun, C.-J. Gu, W.-J. Liu, S.-J. Ding, H.-Y. Yu, C.-T. Xia, D.W. Zhang, Recent advances in β-Ga2O3–metal contacts. Nanoscale Res. Lett. 13, 246 (2018)

    Article  Google Scholar 

  52. P.H. Carey IV., F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, A. Kuramata, Band offsets in ITO/Ga2O3 heterostructures. Appl. Surf. Sci. 422, 179 (2017)

    Article  CAS  Google Scholar 

  53. T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, M. Kasu, Formation of indium–tin oxide ohmic contacts for β-Ga2O3. Jpn. J. Appl. Phys. 55(12), 1202B7 (2016)

    Article  Google Scholar 

  54. P.H. Carey, J. Yang, F. Ren, D.C. Hays, S.J. Pearton, A. Kuramata, I.I. Kravchenko, Improvement of Ohmic contacts on Ga2O3 through use of ITO-interlayers. J. Vac. Sci. Technol. B 35(6), 061201 (2017)

    Article  Google Scholar 

  55. P.H. Carey, J. Yang, F. Ren, D.C. Hays, S.J. Pearton, S. Jang, A. Kuramata, I.I. Kravchenko, Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au. AIP Adv. 7(9), 095313 (2017)

    Article  Google Scholar 

  56. P.H. Carey IV., F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, A. Kuramata, Valence and conduction band offsets in AZO/Ga2O3 heterostructures. Vacuum 141, 103 (2017)

    Article  CAS  Google Scholar 

  57. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance Ohmic contacts. Appl. Phys. Express 6(8), 086502 (2013)

    Article  Google Scholar 

  58. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 55(12), 1202B9 (2016)

    Article  Google Scholar 

  59. M.H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, M. Higashiwaki, Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl. Phys. Express 10(4), 041101 (2017)

    Article  Google Scholar 

  60. T. Kamimura, Y. Nakata, M.H. Wong, M. Higashiwaki, Normally-Off Ga2O3 MOSFETs with unintentionally nitrogen-doped channel layer grown by plasma-assisted molecular beam epitaxy. IEEE Electron Device Lett. 40(7), 1064 (2019)

    Article  CAS  Google Scholar 

  61. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi, Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100(1), 013504 (2012)

    Article  Google Scholar 

  62. M.-H. Lee, R.L. Peterson, Accelerated aging stability of β-Ga2O3–titanium/gold ohmic interfaces. ACS Appl. Mater. Interfaces 12(41), 46277 (2020)

    Article  CAS  Google Scholar 

  63. E. Villora, K. Shimamura, T. Ujiie, K. Aoki, Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature. Appl. Phys. Lett. 92, 202118 (2008)

    Article  Google Scholar 

  64. Z. Xia, C. Joishi, S. Krishnamoorthy, S. Bajaj, Y. Zhang, M. Brenner, S. Lodha, S. Rajan, Delta doped β-Ga2O3 field effect transistors with regrown ohmic contacts. IEEE Electron Device Lett. 39(4), 568 (2018)

    Article  CAS  Google Scholar 

  65. Z. Xia, H. Xue, C. Joishi, J. Mcglone, N.K. Kalarickal, S.H. Sohel, M. Brenner, A. Arehart, S. Ringel, S. Lodha, W. Lu, S. Rajan, β-Ga2O3 delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz. IEEE Electron Device Lett. 40(7), 1052 (2019)

    Article  CAS  Google Scholar 

  66. A. Bhattacharyya, S. Roy, P. Ranga, D. Shoemaker, Y. Song, S. Lundh, S. Choi, S. Krishnamoorthy, 130 mA mm-1 β-Ga2O3 metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown ohmic contacts. Appl. Phys. Express 14(7), 076502 (2021)

    Article  CAS  Google Scholar 

  67. K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, G. Jessen: Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation. in 2017 75th Annu. Device Res. Conf. (DRC) (IEEE, 2017)

  68. K.J. Liddy, A.J. Green, N.S. Hendricks, E.R. Heller, N.A. Moser, K.D. Leedy, A. Popp, M.T. Lindquist, S.E. Tetlak, G. Wagner, K.D. Chabak, G.H. Jessen, Thin channel β-Ga2O3 MOSFETs with self-aligned refractory metal gates. Appl. Phys. Express 12(12), 126501 (2019)

    Article  CAS  Google Scholar 

  69. J. Bae, H.-Y. Kim, J. Kim, Contacting mechanically exfoliated β-Ga2O3 nanobelts for (Opto) electronic device applications. ECS J. Solid State Sci. Technol. 6(2), Q3045 (2017)

    Article  CAS  Google Scholar 

  70. J. Bae, H.W. Kim, I.H. Kang, J. Kim, Field-plate engineering for high breakdown voltage β-Ga2O3 nanolayer field-effect transistors. RSC Adv. 9(17), 9678 (2019)

    Article  CAS  Google Scholar 

  71. H. Zhou, K. Maize, G. Qiu, A. Shakouri, P.D. Ye, β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl. Phys. Lett. 111(9), 092102 (2017)

    Article  Google Scholar 

  72. H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, P.D. Ye, High-performance depletion/enhancement-mode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450 mA/mm. IEEE Electron Device Lett. 38(1), 103 (2017)

    Article  CAS  Google Scholar 

  73. K. D. Chabak, D. E. W. Jr, A. J. Green, A. Crespo, M. Lindquist, K. Leedy, S. Tetlak, N.A. Moser, G. Jessen: Sub-micron gallium oxide radio frequency field-effect transistors. in 2018 IEEE MTT- Int. Microw. Workshop Ser. Adv. Mater. Process. RF THz Appl. (IMWS-AMP) (IEEE, 2018)

  74. K. Zeng, J.S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J.A. Gardella, U. Singisetti, Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett. 38(4), 513 (2017)

    Article  CAS  Google Scholar 

  75. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 2006)

    Google Scholar 

  76. K. Sasaki, A. Kuramata, T. Masui, E.G. Víllora, K. Shimamura, S. Yamakoshi, Device-quality beta-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl. Phys. Express 5(3), 035502 (2012)

    Article  Google Scholar 

  77. E. Ahmadi, O.S. Koksaldi, S.W. Kaun, Y. Oshima, D.B. Short, U.K. Mishra, J.S. Speck, Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Express 10(4), 041102 (2017)

    Article  Google Scholar 

  78. P. Mazzolini, A. Falkenstein, C. Wouters, R. Schewski, T. Markurt, Z. Galazka, M. Martin, M. Albrecht, O. Bierwagen, Substrate-orientation dependence of β-Ga2O3 (100), (010), (001), and (-201) homoepitaxy by indium-mediated metal-exchange catalyzed molecular beam epitaxy (MEXCAT-MBE). APL Mater. 8(1), 011107 (2020)

    Article  CAS  Google Scholar 

  79. R. Schewski, K. Lion, A. Fiedler, C. Wouters, A. Popp, S.V. Levchenko, T. Schulz, M. Schmidbauer, S. BinAnooz, R. Grüneberg, Z. Galazka, G. Wagner, K. Irmscher, M. Scheffler, C. Draxl, M. Albrecht, Step-flow growth in homoepitaxy of β-Ga2O3 (100)—the influence of the miscut direction and faceting. APL Mater. 7(2), 022515 (2019)

    Article  Google Scholar 

  80. Y. Zhang, F. Alema, A. Mauze, O.S. Koksaldi, R. Miller, A. Osinsky, J.S. Speck, MOCVD grown epitaxial β-Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature. APL Mater. 7(2), 022506 (2019)

    Article  Google Scholar 

  81. Z. Feng, A.F.M. Anhar Uddin Bhuiyan, M.R. Karim, H. Zhao, MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties. Appl. Phys. Lett. 114(25), 250601 (2019)

    Article  Google Scholar 

  82. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q.T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, A. Koukitu, Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl. Phys. Express 8(1), 015503 (2015)

    Article  CAS  Google Scholar 

  83. S. Manandhar, C.V. Ramana, Direct, functional relationship between structural and optical properties in titanium-incorporated gallium oxide nanocrystalline thin films. Appl. Phys. Lett. 110(6), 061902 (2017)

    Article  Google Scholar 

  84. M. Bandi, V. Zade, S. Roy, A.N. Nair, S. Seacat, S. Sreenivasan, V. Shutthanandan, C.G. Van de Walle, H. Peelaers, C.V. Ramana, Effect of titanium induced chemical inhomogeneity on crystal structure, electronic structure, and optical properties of wide band gap Ga2O3. Cryst. Growth Des. 20(3), 1422 (2020)

    Article  CAS  Google Scholar 

  85. M.-H. Lee, R.L. Peterson, Annealing induced interfacial evolution of titanium/gold metallization on unintentionally doped β-Ga2O3. ECS J. Solid State Sci. Technol. 8(7), Q3176 (2019)

    Article  CAS  Google Scholar 

  86. D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J.J. van Rensburg, W.E. Meyer, M. Grundmann, Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga2O3 thin films grown by pulsed laser deposition: barrier height of Cu Schottky contacts on β-Ga2O3 thin films. Phys. Status Solidi A 211(1), 40 (2014)

    Article  CAS  Google Scholar 

  87. C. Hou, R.M. Gazoni, R.J. Reeves, M.W. Allen, Direct comparison of plain and oxidized metal Schottky contacts on β-Ga2O3. Appl. Phys. Lett. 114(3), 033502 (2019)

    Article  Google Scholar 

  88. G. Jian, Q. He, W. Mu, B. Fu, H. Dong, Y. Qin, Y. Zhang, H. Xue, S. Long, Z. Jia, H. Lv, Q. Liu, X. Tao, M. Liu, Characterization of the inhomogeneous barrier distribution in a Pt/ (100) β-Ga2O3 Schottky diode via its temperature-dependent electrical properties. AIP Adv. 8(1), 015316 (2018)

    Article  Google Scholar 

  89. P.R.S. Reddy, V. Janardhanam, K.-H. Shim, V.R. Reddy, S.-N. Lee, S.-J. Park, C.-J. Choi, Temperature-dependent Schottky barrier parameters of Ni/Au on n-type (001) β-Ga2O3 Schottky barrier diode. Vacuum 171, 109012 (2020)

    Article  CAS  Google Scholar 

  90. A.T. Ping, Q. Chen, J.W. Yang, M.A. Khan, I. Adesida, The effects of reactive ion etching-induced damage on the characteristics of ohmic contacts to n-Type GaN. J. Electron. Mater. 27(4), 261 (1998)

    Article  CAS  Google Scholar 

  91. C. Joishi, Z. Xia, J.S. Jamison, S.H. Sohel, R.C. Myers, S. Lodha, S. Rajan, Deep-recessed β-Ga2O3 delta-doped field-effect transistors with in situ epitaxial passivation. IEEE Trans. Electron Devices 67(11), 4813 (2020)

    Article  CAS  Google Scholar 

  92. C. Hou, R.M. Gazoni, R.J. Reeves, M.W. Allen, Oxidized metal Schottky contacts on (010) β-Ga2O3. IEEE Electron Device Lett. 40(2), 337 (2019)

    Article  CAS  Google Scholar 

  93. C. Hou, K.R. York, R.A. Makin, S.M. Durbin, R.M. Gazoni, R.J. Reeves, M.W. Allen, High temperature (500°C) operating limits of oxidized platinum group metal (PtOx, IrOx, PdOx, RuOx) Schottky contacts on β-Ga2O3. Appl. Phys. Lett. 117(20), 203502 (2020)

    Article  CAS  Google Scholar 

  94. C. Hou, R.A. Makin, K.R. York, S.M. Durbin, J.I. Scott, R.M. Gazoni, R.J. Reeves, M.W. Allen, High-temperature (350°C) oxidized iridium Schottky contacts on β-Ga2O3. Appl. Phys. Lett. 114(23), 233503 (2019)

    Article  Google Scholar 

  95. E. Kamińska, A. Piotrowska, M. Guziewicz, S. Kasjaniuk, A. Barcz, E. Dynowska, M.D. Bremser, O.H. Nam, R.F. Davis, Ohmic contact to n-GaN with TiN diffusion barrier. MRS Proc. 449, 1055 (1996)

    Article  Google Scholar 

  96. G.H. Jessen, The supercharged semiconductor: gallium oxide could make powerful radios and switch thousands of volts. IEEE Spectr. 58(4), 36 (2021)

    Article  Google Scholar 

  97. M. Placidi, A. Pérez-Tomás, A. Constant, G. Rius, N. Mestres, J. Millán, P. Godignon, Effects of cap layer on ohmic Ti/Al contacts to Si+ implanted GaN. Appl. Surf. Sci. 255(12), 6057 (2009)

    Article  CAS  Google Scholar 

  98. S. Matsunaga, S. Yoshida, T. Kawaji, T. Inada, Silicon implantation in epitaxial GaN layers: encapsulant annealing and electrical properties. J. Appl. Phys. 95(5), 2461 (2004)

    Article  CAS  Google Scholar 

  99. B.N. Feigelson, T.J. Anderson, M. Abraham, J.A. Freitas, J.K. Hite, C.R. Eddy, F.J. Kub, Multicycle rapid thermal annealing technique and its application for the electrical activation of Mg implanted in GaN. J. Cryst. Growth 350(1), 21 (2012)

    Article  CAS  Google Scholar 

  100. T. Kimoto, K. Kawahara, H. Niwa, N. Kaji, J. Suda, Ion implantation technology in SiC for power device applications. in 2014 Int. Workshop Junction Technol. (IWJT) (IEEE, 2014)

  101. H. Okumura, T. Tanaka, Dry and wet etching for β-Ga2O3 Schottky barrier diodes with mesa termination. Jpn. J. Appl. Phys. 58(12), 120902 (2019)

    Article  CAS  Google Scholar 

  102. J.E. Hogan, S.W. Kaun, E. Ahmadi, Y. Oshima, J.S. Speck, Chlorine-based dry etching of β-Ga2O3. Semicond. Sci. Technol. 31(6), 065006 (2016)

    Article  Google Scholar 

  103. J. Yang, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, L.-C. Tung, J. Lin, H. Jiang, J. Lee, E. Flitsiyan, L. Chernyak, S.J. Pearton, A. Kuramata, Annealing of dry etch damage in metallized and bare (-201) Ga2O3. J. Vac. Sci. Technol. B 35(5), 051201 (2017)

    Article  Google Scholar 

  104. M.H. Wong, M. Higashiwaki, Vertical β-Ga2O3 power transistors: a review. IEEE Trans. Electron Devices 67(10), 3925 (2020)

    Article  CAS  Google Scholar 

  105. W. Li, K. Nomoto, Z. Hu, D. Jena, H.G. Xing, Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl. Phys. Express 12(6), 061007 (2019)

    Article  CAS  Google Scholar 

  106. Y. Zhang, A. Mauze, J.S. Speck, Anisotropic etching of β-Ga2O3 using hot phosphoric acid. Appl. Phys. Lett. 115(1), 013501 (2019)

    Article  Google Scholar 

  107. T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, S. Fujita, Wet etching of β-Ga2O3 substrates. Jpn. J. Appl. Phys. 48(4), 040208 (2009)

    Article  Google Scholar 

  108. S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S.J. Pearton, K.H. Baik, A comparative study of wet etching and contacts on (-201) and (010) oriented β-Ga2O3. J. Alloys Compd. 731, 118 (2018)

    Article  CAS  Google Scholar 

  109. B.P. Downey, S.E. Mohney, T.E. Clark, J.R. Flemish, Reliability of aluminum-bearing ohmic contacts to SiC under high current density. Microelectron. Reliab. 50(12), 1967 (2010)

    Article  CAS  Google Scholar 

  110. S.Y. Han, N.K. Kim, E.D. Kim, J.L. Lee, Effects of interfacial reactions on electrical properties of Ni Ohmic contacts on n-Type 4H-SiC. Mater. Sci. Forum 389–393, 897 (2002)

    Article  Google Scholar 

  111. P. Moens, A. Banerjee, A. Constant, P. Coppens, M. Caesar, Z. Li, S. Vandeweghe, F. Declercq, B. Padmanabhan, W. Jeon, J. Guo, A. Salih, M. Tack, M. Meneghini, S. Dalcanale, A. Tajilli, G. Meneghesso, E. Zanoni, M. Uren, I. Chatterjee, S. Karboyan, M. Kuball, (Invited) Intrinsic reliability assessment of 650V rated AlGaN/GaN based power devices: an industry perspective. ECS Trans. 72(4), 65 (2016)

    Article  CAS  Google Scholar 

  112. L. Liu, M. Ling, J. Yang, W. Xiong, W. Jia, G. Wang, Efficiency degradation behaviors of current/thermal co-stressed GaN-based blue light emitting diodes with vertical-structure. J. Appl. Phys. 111(9), 093110 (2012)

    Article  Google Scholar 

  113. J. Zhang, X. Kang, X. Wang, S. Huang, C. Chen, K. Wei, Y. Zheng, Q. Zhou, W. Chen, B. Zhang, X. Liu, Ultralow-contact-resistance Au-free Ohmic contacts with low annealing temperature on AlGaN/GaN heterostructures. IEEE Electron Device Lett. 39(6), 847 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of the Navy, Office of Naval Research under ONR Award No. N00014-17-1-2998 with Dr. Paul Maki. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca L. Peterson.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MH., Peterson, R.L. Process and characterization of ohmic contacts for beta-phase gallium oxide. Journal of Materials Research 36, 4771–4789 (2021). https://doi.org/10.1557/s43578-021-00334-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00334-y

Navigation