Skip to main content
Log in

Ethanol sensing properties of nitrogen doped In2O3 thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nitrogen doped Indium oxide (In2O3) thin films have been investigated for their suitability as a potential sensor for the detection of ethanol vapour. With urea as a precursor, N–In2O3 thin films of various thicknesses have been synthesised by sol–gel technique. The response transients of the films have been found to follow Freundlich adsorption isotherm from the conductance transient analysis. The heat of adsorption (Q) and adsorption activation energy (Ea) have been estimated for the films. Further, ethanol sensing performance of the N–In2O3 films have been found to depend strongly on their microstructure. A significantly large sensing response (Ra/Rg ~ 313 for 300 ppm ethanol) have been recorded for ~ 250 nm thick N–In2O3 film for which the heat of adsorption has been the highest. Two leading factors, namely the modification of surface electron distribution and effective surface areas, have been suggested to regulate the ethanol sensing properties of N–In2O3 thin films.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All data are available as per request.

References

  1. T. Arakawa, X. Wang, T. Kajiro, K. Miyajima, S. Takeuchi, H. Kudo, K. Yano, K. Mitsubayashi, A direct gaseous ethanol imaging system for analysis of alcohol metabolism from exhaled breath. Sens. Actuators B 186, 27 (2013)

    Article  CAS  Google Scholar 

  2. J. Park, H. Yee, K.S. Lee, W. Lee, M. Shin, T.-H. Kim, S. Kim, Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase. Anal. Chim. Acta 390(1–3), 83 (1999)

    Article  CAS  Google Scholar 

  3. A. Loutfi, S. Coradeschi, G.K. Mani, P. Shankar, J.B.B. Rayappan, Electronic noses for food quality: a review. J. Food Eng. 144, 103 (2015)

    Article  CAS  Google Scholar 

  4. S. Miertuš, J. Katrlı́k, A. Pizzariello, M. Stred’anský, J. Švitel, and J. Švorc. Amperometric biosensors based on solid binding matrices applied in food quality monitoring. Biosens. Bioelectron. 13(7–8), 911 (1998)

  5. L. Gao, H. Fu, J. Zhu, J. Wang, Y. Chen, H. Liu, Synthesis of SnO2 nanoparticles for formaldehyde detection with high sensitivity and good selectivity. J. Mater. Res. 35(16), 2208 (2020)

    Article  CAS  Google Scholar 

  6. P.K. Kannan, R. Saraswathi, An impedance sensor for the detection of formaldehyde vapor using ZnO nanoparticles. J. Mater. Res. 32(14), 2800 (2017)

    Article  CAS  Google Scholar 

  7. L. Xu, M. Ge, F. Zhang, H. Huang, Y. Sun, D. He, Nanostructured of SnO2 /NiO composite as a highly selective formaldehyde gas sensor. J. Mater. Res. 35(22), 3079 (2020)

    Article  CAS  Google Scholar 

  8. A. Bhattacharya, Y. Jiang, Q. Gao, X. Chu, Y. Dong, S. Liang, A.K. Chakraborty, Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning. J. Mater. Res. 34(12), 2067 (2019)

    Article  CAS  Google Scholar 

  9. J. Hu, X. Li, X. Wang, Y. Li, Q. Li, F. Wang, Hierarchical aloe-like SnO2 nanoflowers and their gas sensing properties. J. Mater. Res. 33(10), 1433 (2018)

    Article  CAS  Google Scholar 

  10. Y.G. Jang, W.S. Kim, D.H. Kim, S.H. Hong, Fabrication of Ga2O3/SnO2 core-shell nanowires and their ethanol gas sensing properties. J. Mater. Res. 26(17), 2322 (2011)

    Article  CAS  Google Scholar 

  11. A.A. Mane, A.V. Moholkar, Effect of film thickness on NO2 gas sensing properties of sprayed orthorhombic nanocrystalline V2O5 thin films. Appl. Surf. Sci. 416(2), 511 (2017)

    Article  CAS  Google Scholar 

  12. K. Rahimi, A. Yazdani, Ethanol-sensitive nearly aligned ZnO nanorod thin films covered by graphene quantum dots. Mater. Lett. 228(3), 65 (2018)

    Article  CAS  Google Scholar 

  13. T.T. Trinh, N.H. Tu, H.H. Le, K.Y. Ryu, K.B. Le, K. Pillai, J. Yi, Improving the ethanol sensing of ZnO nano-particle thin films—the correlation between the grain size and the sensing mechanism. Sens Actuators B Chem. 152(1), 73 (2011)

    Article  CAS  Google Scholar 

  14. P.K. Shihabudeen, A. Roy, Sensors and Actuators B: chemical Improving ethanol sensing characteristics of indium oxide thin films by nitrogen incorporation. Sens Actuators B. Chem. 305, 127523 (2020)

    Article  CAS  Google Scholar 

  15. Y. Zhang, H. Jia, D. Yu, X. Luo, Z. Zhang, X. Chen, C. Lee, Shape-controllable synthesis of indium oxide structures: nanopyramids and nanorods. J. Mater. Res. 18(12), 2793 (2003)

    Article  CAS  Google Scholar 

  16. G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, J. Ba, Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method. Sens. Actuators B 130(1), 222 (2008)

    Article  CAS  Google Scholar 

  17. M. Gholami, A.A. Khodadadi, A.A. Firooz, Y. Mortazavi, In2O3-ZnO nanocomposites: high sensor response and selectivity to ethanol. Sens. Actuators B 212, 395 (2015)

    Article  CAS  Google Scholar 

  18. H. Yang, S. Wang, Y. Yang, Zn-doped In2O3 nanostructures: preparation, structure and gas-sensing properties. CrystEngComm 14(3), 1135 (2012)

    Article  CAS  Google Scholar 

  19. A. Dey, Semiconductor metal oxide gas sensors: a review. Mater. Sci. Eng. B 229, 206 (2018)

    Article  CAS  Google Scholar 

  20. L. Yu, F. Guo, Z. Liu, S. Liu, B. Yang, M. Yin, X. Fan, Materials characterization facile synthesis of three dimensional porous ZnO fi lms with mesoporous walls and gas sensing properties. Mater. Charact. 112, 224 (2016)

    Article  CAS  Google Scholar 

  21. N.G. Pramod, S.N. Pandey, Effect of Li doping on the structural, optical and formaldehyde sensing properties of In2O3 thin films. Ceram. Int. 41(1), 527 (2015)

    Article  CAS  Google Scholar 

  22. C.J. Brinker, A.J. Hurd, P.R. Schunk, G.C. Frye, C.S. Ashley, Review of sol-gel thin film formation. J. Non. Cryst. Solids 147–148(C), 424 (1992)

    Article  Google Scholar 

  23. L. Gai, L. Ma, H. Jiang, Y. Ma, Y. Tian, H. Liu, Nitrogen-doped In2O3 nanocrystals constituting hierarchical structures with enhanced gas-sensing properties. CrystEngComm 14(21), 7479 (2012)

    Article  CAS  Google Scholar 

  24. K.R. Reyes-Gil, E.A. Reyes-García, D. Raftery, Nitrogen-doped In2O3 thin film electrodes for photocatalytic water splitting. J. Phys. Chem. C 111(39), 14579 (2007)

    Article  CAS  Google Scholar 

  25. S. Mridha, D. Basak, Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater. Res. Bull. 42(5), 875 (2007)

    Article  CAS  Google Scholar 

  26. T. Atwee, A.S. Gadallah, M.A. Salim, A.M. Ghander, Effect of film thickness on structural, morphological, and optical properties of Cu2ZnSnS4 thin films prepared by sol–gel spin coating. Appl. Phys. A Mater. Sci. Process. 125(4), 1 (2019)

    Article  CAS  Google Scholar 

  27. N. Tit, W. Othman, A. Shaheen, M. Ali, Sensors and Actuators B: chemical high selectivity of N-doped ZnO nano-ribbons in detecting H2, O2 and CO2 molecules: effect of negative-differential resistance on. Sens. Actuators B 270, 167 (2018)

    Article  CAS  Google Scholar 

  28. K. Xu, L. Yang, Y. Yang, C. Yuan, Improved ethanol gas sensing performances of a ZnO/Co3O4 composite induced by its flytrap-like structure. Phys. Chem. Chem. Phys. 19(43), 29601 (2017)

    Article  CAS  Google Scholar 

  29. V. Ambardekar, P.P. Bandyopadhyay, S.B. Majumder, Sensors and Actuators B: chemical understanding on the ethanol sensing mechanism of atmospheric plasma. Sens. Actuators B. Chem. 290(April), 414 (2019)

    Article  CAS  Google Scholar 

  30. H. Hu, M. Trejo, M.E. Nicho, J.M. Saniger, Adsorption kinetics of optochemical NH3 gas sensing with semiconductor polyaniline lms. Sens. Actuators B 82, 14 (2002)

    Article  CAS  Google Scholar 

  31. K. Mukherjee, S.B. Majumder, Analyses of response and recovery kinetics of zinc ferrite as hydrogen gas sensor. J. Appl. Phys. 106(6), 1 (2009)

    Article  CAS  Google Scholar 

  32. W. Schirmer, Physical chemistry of surfaces. Zeitschrift für Phys. Chemie 210(Part_1), 134 (1999)

    Article  Google Scholar 

  33. S. Builes, S.I. Sandler, R. Xiong, Isosteric heats of gas and liquid adsorption. Langmuir 29(33), 10416 (2013)

    Article  CAS  Google Scholar 

  34. V.J. Inglezakis, A.A. Zorpas, Heat of adsorption, adsorption energy and activation energy in adsorption and ion exchange systems. Desalin. Water Treat. 39(1–3), 149 (2012)

    CAS  Google Scholar 

  35. B. Schmitz, U. Müller, N. Trukhan, M. Schubert, G. Férey, M. Hirscher, Heat of adsorption for hydrogen in microporous high-surface-area materials. ChemPhysChem 9(15), 2181 (2008)

    Article  CAS  Google Scholar 

  36. A. Prim, E. Pellicer, E. Rossinyol, F. Peiró, A. Cornet, J.R. Morante, A novel mesoporous CaO-loaded In2O3 material for CO2 sensing. Adv. Funct. Mater. 17(15), 2957 (2007)

    Article  CAS  Google Scholar 

  37. Y.F. Sun, S.B. Liu, F.L. Meng, J.Y. Liu, Z. Jin, L.T. Kong, J.H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12(3), 2610 (2012)

    Article  CAS  Google Scholar 

  38. H. Dong, Y. Liu, G. Li, X. Wang, D. Xu, Z. Chen, T. Zhang, J. Wang, L. Zhang, Sensors and Actuators B: chemical hierarchically rosette-like In2O3 microspheres for volatile organic compounds gas sensors. Sens. Actuators B. Chem. 178, 302 (2013)

    Article  CAS  Google Scholar 

  39. K. Inyawilert, A. Wisitsora-at, A. Tuantranont, P. Singjai, Sensors and Actuators B: chemical ultra-rapid VOCs sensors based on sparked- In2O3 sensing films. Sens. Actuators B. Chem. 192, 745 (2014)

    Article  CAS  Google Scholar 

  40. H. Idriss, E.G. Seebauer, Reactions of ethanol over metal oxides. J. Mol. Catal. A Chem. 152(1–2), 201 (2000)

    Article  CAS  Google Scholar 

  41. T. Wolkenstein, Electronic Processes on Semiconductor Surfaces during Chemisorption (Springer, Berlin, 1992)

    Google Scholar 

  42. K.W. Kim, P.S. Cho, S.J. Kim, J.H. Lee, C.Y. Kang, J.S. Kim, S.J. Yoon, The selective detection of C2H5OH using SnO2-ZnO thin film gas sensors prepared by combinatorial solution deposition. Sens. Actuators B 123(1), 318 (2007)

    Article  CAS  Google Scholar 

  43. R. Huang, V. Fung, Z. Wu, D. Jiang, Understanding the conversion of ethanol to propene on In2O3 from first principles. Catal. Today 350, 19 (2020)

    Article  CAS  Google Scholar 

  44. J. Wang, Q. Liu, An ordered mesoporous aluminosilicate oxynitride template to prepare N-incorporated ordered mesoporous carbon. J. Phys. Chem. C 111(20), 7266 (2007)

    Article  CAS  Google Scholar 

  45. H. Sun, W. Fan, Y. Li, X. Cheng, P. Li, X. Zhao, Origin of the visible photocatalytic activity of N-doped In2O3: a quantum mechanical study. J. Phys. Chem. C 114(7), 3028 (2010)

    Article  CAS  Google Scholar 

  46. B. Zhang, N.N. Zhang, J.F. Chen, Y. Hou, S. Yang, J.W. Guo, X.H. Yang, J.H. Zhong, H.F. Wang, P. Hu, H.J. Zhao, H.G. Yang, Turning indium oxide into a superior electrocatalyst: deterministic heteroatoms. Sci. Rep. 3(110), 1 (2013)

    Google Scholar 

  47. W. Wen, J. M. Wu, and Y. De Wang: Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sens. Actuators B 184, 78 (2013)

  48. D. R. Miller, S. A. Akbar, and P. A. Morris: Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuators B 204, 250 (2014)

  49. G. Sakai, N. Matsunaga, K. Shimanoe, N. Yamazoe, Theory of gas-diffusion controlled sensitivity for thin film semiconductor gas sensor. Sens. Actuators B 80(2), 125 (2001)

    Article  CAS  Google Scholar 

  50. A. Ghosh, S.B. Majumder, Modeling the sensing characteristics of chemi-resistive thin film semi-conducting gas sensors. Phys. Chem. Chem. Phys. 19(34), 23431 (2017)

    Article  CAS  Google Scholar 

  51. N. Matsunaga, G. Sakai, K. Shimanoe, N. Yamazoe, Formulation of gas diffusion dynamics for thin film semiconductor gas sensor based on simple reaction–diffusion equation. Sens. Actuators B 96(1–2), 226 (2003)

    Article  CAS  Google Scholar 

  52. V. Ambardekar, P.P. Bandyopadhyay, S.B. Majumder, Atmospheric plasma sprayed SnO2 coating for ethanol detection. J. Alloys Compd. 752(2), 440 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors acknowledge partial support from SERB, Govt. of India vide letter ECR/2017/000498 dated 20-03-2018 for executing this research. The authors acknowledge SEM facility under DST-FIST program at Materials Science Centre and Prof. Subhasish Basu Majumder, Materials Science Centre, for extending experimental facilities pertinent to gas sensing measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Roy Chaudhuri.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shihabudeen, P.K., Roy Chaudhuri, A. Ethanol sensing properties of nitrogen doped In2O3 thin films. Journal of Materials Research 36, 1561–1572 (2021). https://doi.org/10.1557/s43578-021-00232-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-021-00232-3

Navigation