Skip to main content
Log in

Hardening effect in lead-free piezoelectric ceramics

  • Invited Feature Paper - REVIEW
  • Focus Issue: Lead-Free Ferroelectric Materials
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Ecologically sustainable development of piezoelectric ceramics has been the primary target of the community over the past 20 years. While the development of “soft” lead-free piezoelectric ceramics has been of high maturity, the understanding of “hard” lead-free piezoelectric ceramics is still far from satisfactory, leading to a limited chance for high-power applications. The review starts with an introduction of loss mechanisms and the hardening effect in piezoelectric ceramics, including three different models mainly developed based on the lead zirconate titanate system. Then, studies on the hardening behavior of BaTiO3-based, (Bi0.5Na0.5)TiO3-based, and (K0.5Na0.5)NbO3-based lead-free piezoelectric ceramics are summarized with emphasis on the approaches to enhance mechanical quality factor. Meanwhile, three different characterization methods of high-power performances are introduced: the constant-voltage method, constant-current method, and transient (or burst) method. Finally, the state-of-the-art lead-free ultrasonic transducer applications are highlighted. This paper concludes with the remaining challenges for the development of “hard” lead-free piezoelectric ceramics for high-power piezoelectric applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

(reproduced from Ref. [138] with permission from Copyright 2009 The Japan Society of Applied Physics).

Figure 7

(reproduced from Ref. [140] with permission from Copyright 2007 Taylor & Francis).

Similar content being viewed by others

References

  1. K. Uchino, Advanced Piezoelectric Materials: Science and Technology (Woodhead Publishing, Sawston, 2017), pp. 647–750

    Book  Google Scholar 

  2. J.A. Gallego-Juarez, K.F. Graff, Power Ultrasonics: Applications of High-Intensity Ultrasound (Woodhead Publishing, Sawston, 2014)

    Google Scholar 

  3. Y. Yao, Y. Pan, S. Liu, Power ultrasound and its applications: a state-of-the-art review. Ultrason. Sonochem. 62, 104722 (2020)

    Article  CAS  Google Scholar 

  4. A.J. Masys, W. Ren, G. Yang, B.K. Mukherjee, Piezoelectric strain in lead zirconate titante ceramics as a function of electric field, frequency, and dc bias. J. Appl. Phys. 94(2), 1155 (2003)

    Article  CAS  Google Scholar 

  5. S. Takahashi, Y. Sasaki, S. Hirose, Driving electric field effects on piezoelectric transducers. Jpn. J. Appl. Phys. 36(5B), 3010 (1997)

    Article  CAS  Google Scholar 

  6. S. Zhang, R. Xia, L. Laurent, A. Dean, R.S. Thomas, Piezoelectric materials for high-power, high temperature applications. Mater. Lett. 59, 3471 (2005)

    Article  CAS  Google Scholar 

  7. A.J. Bell, O. Deubzer, Lead-free piezoelectrics—the environmental and regulatory issues. MRS Bull. 43(8), 581 (2018)

    Article  CAS  Google Scholar 

  8. J. Koruza, A.J. Bell, T. Frömling, K.G. Webber, K. Wang, J. Rödel, Requirements for the transfer of lead-free piezoceramics into application. J. Materiomics. 4(1), 13 (2018)

    Article  Google Scholar 

  9. J. Gao, X. Ke, M. Acosta, J. Glaum, X. Ren, High piezoelectricity by multiphase coexisting point: barium titanate derivatives. MRS Bull. 43(8), 595 (2018)

    Article  CAS  Google Scholar 

  10. A.R. Paterson, H. Nagata, X. Tan, J.E. Daniels, M. Hinterstein, R. Ranjan, P.B. Groszewicz, W. Jo, J.L. Jones, Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives. MRS Bull. 43(8), 600 (2018)

    Article  CAS  Google Scholar 

  11. M. Hejazi, E. Taghaddos, E. Gurdal, K. Uchino, A. Safari, High power performance of manganese-doped BNT-based Pb-free piezoelectric ceramics. J. Am. Ceram. Soc. 97(10), 3192 (2014)

    Article  CAS  Google Scholar 

  12. S. Someno, H. Nagata, T. Takenaka, High-temperature and high-power piezoelectric characteristics of (Bi0.5Na0.5)TiO3-based lead-free piezoelectric ceramics. J. Ceram. Soc. Japan 122(1426), 406 (2014)

    Article  Google Scholar 

  13. H.C. Thong, C. Zhao, Z. Zhou, C.F. Wu, Y.X. Liu, Z.Z. Du, J.F. Li, W. Gong, K. Wang, Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater. Today 29, 37 (2019)

    Article  CAS  Google Scholar 

  14. Q. Liu, Y. Zhang, J. Gao, Z. Zhou, D. Yang, K.Y. Lee, A. Studer, M. Hinterstein, K. Wang, X. Zhang, L. Li, J.F. Li, Practical high-performance lead-free piezoelectrics: structural flexibility beyond utilizing multiphase coexistence. National Science Review. 7, 355 (2020)

    Article  CAS  Google Scholar 

  15. H. Tao, H. Wu, Y. Liu, Y. Zhang, J. Wu, F. Li, X. Lyu, C. Zhao, D. Xiao, J. Zhu, S.J. Pennycook, Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 141(35), 13987 (2019)

    Article  CAS  Google Scholar 

  16. H.N. Shekhani, K. Uchino, Evaluation of the mechanical quality factor under high power conditions in piezoelectric ceramics from electrical power. J. Eur. Ceram. Soc. 35(2), 541 (2015)

    Article  CAS  Google Scholar 

  17. Z.-G. Ye, Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials Synthesis, Properties and Applications (Woodhead Publishing, Sawston, 2008), p. 491

    Book  Google Scholar 

  18. K. Uchino, J.R. Giniewicz, Micromechatronics (Marcel Dekker, New York, 2003), p. 476

    Book  Google Scholar 

  19. R. Holland: Representation of dielectric, elastic, and piezoelectric loss by complex coefficients. IEEE transactions on sonics and ultrasonic. Su-14, (1967)

  20. J.G. Smits, Iterative method for accurate determination of the real and imaginary parts of the materials coefficients of piezoelectric ceramics. IEEE Trans. Sonics Ultrasonics. 23(6), 393 (1976)

    Article  Google Scholar 

  21. C. Alemany, L. Pardo, B. Jimenez, F. Carmona, J. Mendiola, A.M. Gonzalez, Automatic iterative evaluation of complex material constants in piezoelectric ceramics. J. Phys. D 27, 148 (1994)

    Article  CAS  Google Scholar 

  22. K.W. Kwok, H.L.W. Chan, C.L. Choy, Evaluation of the material parameters of piezoelectric materials by various methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44(4), 733 (1997)

    Article  Google Scholar 

  23. A.M. Gonzalez, A. Garcia, C. Benavente-Peces and L. Pardo: Revisiting the characterization of the losses in piezoelectric materials from impedance spectroscopy at resonance. Materials (Basel). 9(2), (2016)

  24. A.V. Mezheritsky, Elastic, dielectric, and piezoelectric losses in piezoceramics: How it works all together. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(6), 695 (2004)

    Google Scholar 

  25. R. Holland, E.P. EerNisse, Design of Resonant Piezoelectric Devices (MIT Press, Cambridge, 1969)

    Google Scholar 

  26. D. Damjanovic, An equivalent electric-circuit of a piezoelectric bar resonator with a large piezoelectric phase-angle. Ferroelectrics 110, 129 (1990)

    Article  CAS  Google Scholar 

  27. S. Hirose, M. Aoyagi, Y. Tomikawa, S. Takahashi, K. Uchino, High power characteristics at antiresonance frequency of piezoelectric transducers. Ultrasonics 34(2–5), 213 (1996)

    Article  Google Scholar 

  28. K. Härdtl, Electrical and mechanical losses in ferroelectric ceramics. Ceram. Int. 8(4), 121 (1982)

    Article  Google Scholar 

  29. G. Liu, S. Zhang, W. Jiang, W. Cao, Losses in ferroelectric materials. Mater. Sci. Eng. R 89, 1 (2015)

    Article  CAS  Google Scholar 

  30. H.J. Lee, S.O. Ural, L. Chen, K. Uchino, S. Zhang, High power characteristics of lead-free piezoelectric ceramics. J. Am. Ceram. Soc. 95(11), 3383 (2012)

    Article  CAS  Google Scholar 

  31. S.-E. Park, T.R. Shrout, Characteristics of relaxor-based piezoelectric single crystals for ultrasonic transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 44, 1140 (1997)

    Article  Google Scholar 

  32. R.C. Buchanan, Ceramic Materials for Electronics (CRC Press, Boca Raton, 2018)

    Book  Google Scholar 

  33. C. Zhao, Ultrasonic motors: Technologies and Applications (Springer, New York, 2011)

    Book  Google Scholar 

  34. M. Lee, Dielectric constant and loss tangent in LiNbO3 crystals from 90 to 147 GHz. Appl. Phys. Lett. 79(9), 1342 (2001)

    Article  CAS  Google Scholar 

  35. N. Kari, T. Ritter, S. Park, T.R. Shrout, K. Shung, Investigation of potassium niobate as an ultrasonic transducer material, in 2000 IEEE Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No. 00CH37121), (2, IEEE, 2000). 1065

  36. S. Zhang, F. Li, J. Luo, R. Sahul, T.R. Shrout, Relaxor-PbTiO3 single crystals for various applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(8), 1572 (2013)

    Article  Google Scholar 

  37. G. Yongkang, U. Kenji, V. Dwight, Time dependence of the mechanical quality factor in “hard” lead zirconate titanate ceramics: development of an internal dipolar field and high power origin. Jpn. J. Appl. Phys. 45(12), 9119 (2006)

    Google Scholar 

  38. M.H. Zhang, K. Wang, Y.J. Du, G. Dai, W. Sun, G. Li, D. Hu, H.C. Thong, C. Zhao, X.Q. Xi, High and temperature-insensitive piezoelectric strain in alkali niobate lead-free perovskite. J. Am. Chem. Soc. 139(10), 3889 (2017)

    Article  CAS  Google Scholar 

  39. D. Lin, K.W. Kwok, H.L.W. Chan, Piezoelectric and ferroelectric properties of Cu-doped K0.5Na0.5NbO3lead-free ceramics. J. Phys. D 41(4), 045401 (2008)

    Article  Google Scholar 

  40. S. Zhang, J.B. Lim, H.J. Lee, T.R. Shrout, Characterization of hard piezoelectric lead-free ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(8), 1523 (2009)

    Article  Google Scholar 

  41. Z.Y. Shen, J.F. Li, Enhancement of piezoelectric constant d33 in BaTiO3 ceramics due to nano-domain structure. J. Ceram. Soc. Jpn. 118(10), 940 (2010)

    Article  CAS  Google Scholar 

  42. D. Tanaka, J. Yamazaki, M. Furukawa, T. Tsukada, High power characteristics of (Ca,Ba)TiO3 piezoelectric ceramics with high mechanical quality factor. Jpn. J. Appl. Phys. 49(9S), 09MD03 (2010)

  43. Y.S. Sung, M.H. Kim, Effects of B-site donor and acceptor doping in Pb-free (Bi0. 5Na0. 5)TiO3 ceramics. Ferroelectrics. 13, 217 (2010)

  44. Y.-H. Chen, K. Uchino, D. Viehland, Substituent effects in 0.65Pb(Mg1/3Nb2/3)O30.35PbTiO3 piezoelectric ceramics. J. Electroceram. 6, 13 (2001)

    Article  CAS  Google Scholar 

  45. Xudong Qi, Enwei Sun, Junjun Wang, Rui Zhang, Bin Yang and W. Cao: Electromechanical properties of Mn-doped Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric ceramics. Ceramics International. 42(14), 15332 (2016)

  46. D. Wang, M. Cao, S. Zhang, Piezoelectric ceramics in the PbSnO3–Pb(Mg1/3Nb2/3)O3–PbTiO3 ternary system. J. Am. Ceram. Soc. 94(11), 3690 (2011)

    Article  CAS  Google Scholar 

  47. J. Nuffer, D.C. Lupascu, J. Rödel, Damage evolution in ferroelectric PZT induced by bipolar electric cycling. Acta Mater. 48(14), 3783 (2000)

    Article  CAS  Google Scholar 

  48. Y.X. Liu, H.C. Thong, C. Zhao, Q. Liu, X. Xu, K. Wang, J.F. Li, Influence of trace zirconia addition on the properties of (K, Na)NbO3 solid solutions. Journal of Materials Chemistry C. 7(23), 6914 (2019)

    Article  CAS  Google Scholar 

  49. R.-A. Eichel, Structural and dynamic properties of oxygen vacancies in perovskite oxides—analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques. Phys. Chem. Chem. Phys. 13(2), 368 (2011)

    Article  CAS  Google Scholar 

  50. P. Erhart, P. Träskelin, K. Albe, Formation and switching of defect dipoles in acceptor-doped lead titanate: a kinetic model based on first-principles calculations. Phys. Rev. B. 88(2), 024107 (2013)

    Article  Google Scholar 

  51. M.I. Morozov, D. Damjanovic, Hardening-softening transition in Fe-doped Pb (Zr, Ti)O3 ceramics and evolution of the third harmonic of the polarization response. J. Appl. Phys. 104(3), 034107 (2008)

    Article  Google Scholar 

  52. M. Morozov, D. Damjanovic, Charge migration in Pb(Zr, Ti)O3 ceramics and its relation to ageing, hardening, and softening. J. Appl. Phys. 107(3), 034106 (2010)

    Article  Google Scholar 

  53. S. Leary, S. Pilgrim, Harmonic analysis of the polarization response in Pb(Mg/sub 1/3/Nb/sub 2/3/)O/sub 3/-based ceramics-A study in aging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(1), 163 (1998)

    Article  CAS  Google Scholar 

  54. X. Ren, Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3(2), 91 (2004)

    Article  CAS  Google Scholar 

  55. P. Jakes, E. Erdem, R.-A. Eichel, L. Jin, D. Damjanovic, Position of defects with respect to domain walls in Fe3+-doped Pb[Zr0.52Ti0.48]O3 piezoelectric ceramics. Appl. Phys. Lett. 98(7), 072907 (2011)

  56. L. He, D. Vanderbilt, First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68(13), 134103 (2003)

    Article  Google Scholar 

  57. Z. Li, H.C. Thong, Y.F. Zhang, Z. Xu, Z. Zhou, Y.X. Liu, Y.Y.S. Cheng, S.H. Wang, C. Zhao, F. Chen, K. Bi, B. Han and K. Wang: Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency. Advanced Functional Materials. 2005012, (2020)

  58. T. Yang, V. Gopalan, P. Swart, U. Mohideen, Direct observation of pinning and bowing of a single ferroelectric domain wall. Phys. Rev. Lett. 82(20), 4106 (1999)

    Article  CAS  Google Scholar 

  59. D. Damjanovic, Logarithmic frequency dependence of the piezoelectric effect due to pinning of ferroelectric-ferroelastic domain walls. Phys. Rev. B 55(2), R649 (1997)

    Article  CAS  Google Scholar 

  60. M. Morozov, D. Damjanovic, N. Setter, The nonlinearity and subswitching hysteresis in hard and soft PZT. J. Eur. Ceram. Soc. 25(12), 2483 (2005)

    Article  CAS  Google Scholar 

  61. A. Chandrasekaran, D. Damjanovic, N. Setter, N. Marzari, Defect ordering and defect–domain-wall interactions in PbTiO3: a first-principles study. Phys. Rev. B. 88(21), 214116 (2013)

    Article  Google Scholar 

  62. Y.A. Genenko, J. Glaum, M.J. Hoffmann, K. Albe, Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 192, 52 (2015)

    Article  CAS  Google Scholar 

  63. D.C. Lupascu, Y.A. Genenko, N. Balke, Aging in ferroelectrics. J. Am. Ceram. Soc. 89(1), 224 (2006)

    Article  CAS  Google Scholar 

  64. Y.A. Genenko, D.C. Lupascu, Drift of charged defects in local fields as aging mechanism in ferroelectrics. Phys. Rev. B 75(18), 184107 (2007)

    Article  Google Scholar 

  65. I.S. Vorotiahin, A.N. Morozovska, Y.A. Genenko, Hierarchy of domain reconstruction processes due to charged defect migration in acceptor doped ferroelectrics. Acta Mater. 184, 267 (2020)

    Article  CAS  Google Scholar 

  66. C. Randall, R. Newnham, L. Cross, History of the first ferroelectric oxide, BaTiO3. Materials Research Institute, The Pennsylvania State University, University Park, Pa, USA. 1 (2004)

  67. D. Schofield, R. Brown, Improved barium titanate composition. J. Acoust. Soc. Am. 29(3), 394 (1957)

    Article  CAS  Google Scholar 

  68. H. Baerwald, D. Berlincourt, Electromechanical response and dielectric loss of prepolarized barium titanate under maintained electric bias. Part I. J. Acoustical Soc. Am. 25(4), 703 (1953)

    Article  Google Scholar 

  69. D. Schofield, R. Brown, An investigation of some barium titanate compositions for transducer applications. Can. J. Phys. 35(5), 594 (1957)

    Article  CAS  Google Scholar 

  70. S. Liu, R. Cohen, Multiscale simulations of defect dipole–enhanced electromechanical coupling at dilute defect concentrations. Appl. Phys. Lett. 111(8), 082903 (2017)

    Article  Google Scholar 

  71. L. Wang, Z. Zhou, X. Zhao, Z. Liu, R. Liang, X. Dong, Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping domain structures. Appl. Phys. Lett. 110(10), 102904 (2017)

    Article  Google Scholar 

  72. R. Song, Y. Zhao, W. Li, Y. Yu, J. Sheng, Z. Li, Y. Zhang, H. Xia, W.D. Fei, High temperature stability and mechanical quality factor of donor-acceptor co-doped BaTiO3 piezoelectrics. Acta Mater. 181, 200 (2019)

    Article  CAS  Google Scholar 

  73. R. Inoue, S. Ishikawa, Y. Kitanaka, T. Oguchi, Y. Noguchi, M. Miyayama, Photocurrent characteristics of Mn-doped barium titanate ferroelectric single crystals. Jpn. J. App. Phys. 52(9S1), 09KF03 (2013)

  74. Y. Feng, W.L. Li, D. Xu, Y.L. Qiao, Y. Yu, Y. Zhao, W.D. Fei, Defect engineering of lead-free piezoelectrics with high piezoelectric properties and temperature-stability. ACS Appl. Mater. Interfaces. 8(14), 9231 (2016)

    Article  CAS  Google Scholar 

  75. L. Li, Y. Zhen, Structure, dielectric and piezoelectric behaviors of (K, Na)NbO3 ceramics with high Qm in low-humidity by introducing SiO2 and CuO mixed oxides. J. Mater. Sci.: Mater. Electron. 27(10), 10888 (2016)

    CAS  Google Scholar 

  76. Y. Zhen, L. Li, Y. Lin, K. Wang, F. Zhu, K. Jia, High Qm values and humidity effect on the electrical properties of (K, Na)NbO3 lead-free piezoceramics doped with B2O3-CuO mixed oxides. J. Am. Ceram. Soc. 100(4), 1561 (2017)

    Article  CAS  Google Scholar 

  77. Y. Liao, D. Wang, H. Wang, T. Wang, X. Wei, Q. Zheng, W. Jie, D. Lin, Defect-induced transformation between hardening and softening behaviors in CuF2-doped K0.5Na0.5NbO3 piezoceramics. Ceram. Int. 45(2), 2644 (2019)

    Article  CAS  Google Scholar 

  78. J.B. Lim, S. Zhang, H.J. Lee, J.H. Jeon, T.R. Shrout, Shear-mode piezoelectric properties of modified-(K, Na)NbO3 ceramics for “hard” lead-free materials. J. Am. Ceram. Soc. 93(9), 2519 (2010)

    Article  CAS  Google Scholar 

  79. C. Liu, D.Q. Xiao, J.G. Wu, Z. Wang, F.X. Li, T. Huang, J.G. Zhu, Electrical properties of CuO-doped (K0.5Na0.5)(Nb0.92Sb0.03Ta0.05)O3 piezoelectric ceramics with high Qm. Ferroelectrics. 458(1), 31 (2014)

    Article  CAS  Google Scholar 

  80. W.F. Liang, D.Q. Xiao, J.G. Wu, W.J. Wu, J.G. Zhu, Origin of high mechanical quality factor in CuO-doped (K, Na)NbO3-based ceramics. Front. Mater. Sci. 8(2), 165 (2014)

    Article  Google Scholar 

  81. X. Tan, H. Fan, S. Ke, L. Zhou, Y.W. Mai, H. Huang, Structural dependence of piezoelectric, dielectric and ferroelectric properties of K0.5Na0.5(Nb1−2x/5Cux)O3 lead-free ceramics with high Qm. Mater. Res. Bull. 47(12), 4472 (2012)

    Article  CAS  Google Scholar 

  82. H.Y. Park, I.T. Seo, M.K. Choi, S. Nahm, H.G. Lee, H.W. Kang, B.H. Choi, Microstructure and piezoelectric properties of the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3 lead-free piezoelectric ceramics. J. Appl. Phys. 104(3), 034103 (2008)

    Article  Google Scholar 

  83. H.S. Han, J. Koruza, E.A. Patterson, J. Schultheiß, E. Erdem, W. Jo, J.-S. Lee, J. Rödel, Hardening behavior and highly enhanced mechanical quality factor in (K0.5Na0.5)NbO3-based ceramics. J. Eur. Ceram. Soc. 37(5), 2083 (2017)

  84. Q. Zhang, F. Xu, R. Yang, Y. Lu, P. Li, X. Shang, T. Zhou, Y. He, Suppressed tanδ and enhanced Qm in KCT and Ni2O3 co-modified [(K0.43Na0.57)0.94Li0.06] [(Nb0.94Sb0.06)0.95Ta0.05O3 lead-free piezoelectric ceramics. Ceram. Int. 43(2), 2537 (2017)

  85. D. Lin, K.W. Kwok, H.L.W. Chan, Piezoelectric and ferroelectric properties of KxNa1−xNbO3 lead-free ceramics with MnO2 and CuO doping. J. Alloy Compd. 461(1–2), 273 (2008)

    Article  CAS  Google Scholar 

  86. B.C. Park, I.K. Hong, H.D. Jang, V.D.N. Tran, W.P. Tai, J.-S. Lee, Highly enhanced mechanical quality factor in lead-free (K0.5Na0.5)NbO3 piezoelectric ceramics by co-doping with K5.4Cu1.3Ta10O29 and CuO. Mater. Lett. 64(14), 1577 (2010)

  87. S.L. Yang, C.C. Tsai, C.S. Hong, S.Y. Chu, Effects of sintering aid CuTa2O6 on piezoelectric and dielectric properties of sodium potassium niobate ceramics. Mater. Res. Bull. 47(4), 998 (2012)

    Article  CAS  Google Scholar 

  88. J.B. Lim, S. Zhang, J.H. Jeon, T.R. Shrout, (K, Na)NbO3-based ceramics for piezoelectric “hard” lead-free materials. J. Am. Ceram. Soc. 93, 1218 (2010)

    Article  CAS  Google Scholar 

  89. M. Matsubara, T. Yamaguchi, K. Kikuta, S.I. Hirano, Sinterability and piezoelectric properties of (K,Na)NbO3 ceramics with novel sintering aid. Japanese Journal of Applied Physics. 43(10), 7159 (2004)

  90. Y. Liao, D. Wang, H. Wang, L. Zhou, Q. Zheng, D. Lin, Modulation of defects and electrical behaviors of Cu-doped KNN ceramics by fluorine-oxygen substitution. Dalton Trans. 49(4), 1311 (2020)

    Article  CAS  Google Scholar 

  91. W. Wu, M. Chen, J. Li, Y. Ding, C. Liu: Structure and asymmetric ferroelectric loops of (K0.48Na0.52)NbO3–1 mol%CuO–xmol%Co2O3 ceramics with low-temperature sintering. J. Alloys Compds. 670, 128 (2016)

  92. M. Matsubara, K. Kikuta, S. Hirano, Piezoelectric properties of (K0.5Na0.5)(Nb1−xTax)O3 − K5.4CuTa10O29 ceramics. J. Appl. Phys. 97(11), 114105 (2005)

  93. M. Matsubara, T. Yamaguchi, W. Sakamoto, K. Kikuta, T. Yogo, S.-I. Hirano, Processing and piezoelectric properties of lead-free (K, Na)(Nb, Ta)O3 ceramics. J. Am. Ceram. Soc. 88(5), 1190 (2005)

    Article  CAS  Google Scholar 

  94. J. Hao, Z. Xu, R. Chu, Y. Zhang, G. Li, Q. Yin, Effects of MnO2 on phase structure, microstructure and electrical properties of (K0.5Na0.5)0.94Li0.06NbO3 lead-free ceramics. Mater. Chem. Phys. 118(1), 229 (2009)

  95. Z. Xu, L.Y. Lou, C.L. Zhao, H.C. Tang, Y.X. Liu, Z. Li, X.M. Qi, B.P. Zhang, J.F. Li, W. Gong and K. Wang: Effect of manganese doping on ferroelectric and piezoelectric properties of KNbO3 and (K0.5Na0.5)NbO3 lead-free ceramics. Acta Physica Sinica. 69(12), 127705 (2020)

  96. T. Wang, D. Wang, Y. Liao, Q. Zheng, H. Sun, K.W. Kwok, N. Jiang, W. Jie, C. Xu, D. Lin, Defect structure, ferroelectricity and piezoelectricity in Fe/Mn/Cu-doped K0.5Na0.5NbO3 lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 38(15), 4915 (2018)

  97. F.Z. Yao, M.H. Zhang, K. Wang, J.J. Zhou, F. Chen, B. Xu, F. Li, Y. Shen, Q.H. Zhang, L. Gu, X.W. Zhang, J.F. Li, Refreshing piezoelectrics: Distinctive role of manganese in lead-free perovskites. ACS Appl. Mater. Interfaces. 10(43), 37298 (2018)

    Article  CAS  Google Scholar 

  98. D. Lin, Z. Li, S. Zhang, Z. Xu, X. Yao, Influence of MnO2 doping on the dielectric and diezoelectric properties and the domain structure in (K0.5Na0.5)NbO3 single crystals. J. Am. Ceram. Soc. 93(4), 941 (2010)

  99. J.W. Li, Y.X. Liu, H.C. Thong, Z.Z. Du, Z. Li, Z.X. Zhu, J.K. Nie, J.F. Geng, W. Gong, K. Wang, Effect of ZnO doping on (K,Na)NbO3-based lead-free piezoceramics: Enhanced ferroelectric and piezoelectric performance. J. Alloys Compds. 155936, (2020)

  100. H.C. Thong, Q. Li, M.H. Zhang, C. Zhao, K.X. Huang, J.F. Li, K. Wang, Defect suppression in CaZrO3-modified (K, Na)NbO3 -based lead-free piezoceramic by sintering atmosphere control. J. Am. Ceram. Soc. 101(8), 3393 (2018)

    Article  CAS  Google Scholar 

  101. H. Liu, P. Veber, J. Rödel, D. Rytz, P.B. Fabritchnyi, M.I. Afanasov, E.A. Patterson, T. Frömling, M. Maglione, J. Koruza, High-performance piezoelectric (K, Na, Li)(Nb, Ta, Sb)O3 single crystals by oxygen annealing. Acta Mater. 148, 499 (2018)

    Article  CAS  Google Scholar 

  102. W. Yang, D. Jin, T. Wang, J. Cheng, Effect of oxide dopants on the structure and electrical properties of (Na0.5K0.5)NbO3-LiSbO3 lead-freepiezoelectricceramics. Physica B 405(7), 1918 (2010)

  103. I.Y. Kang, I.T. Seo, Y.J. Cha, J.H. Choi, S. Nahm, T.H. Sung, J.H. Paik, Low temperature sintering of ZnO and MnO2-added (Na0.5K0.5)NbO3 ceramics. J. Eur. Ceram. Soc. 32(10), 2381 (2012)

  104. V. Isupov, Ferroelectric Na0.5Bi0.5TiO3 and K0.5Bi0.5TiO3 perovskites and their solid solutions. Ferroelectrics 315(1), 123 (2005)

  105. F. Cordero, F. Craciun, F. Trequattrini, E. Mercadelli, C. Galassi, Phase transitions and phase diagram of the ferroelectric perovskite (Na0.5Bi0.5)1− xBaxTiO3 by anelastic and dielectric measurements. Phys. Rev. B 81(14), 144124 (2010)

  106. Y.R. Zhang, J.F. Li, B.P. Zhang, Enhancing electrical properties in NBT–KBT lead-free piezoelectric ceramics by optimizing sintering temperature. J. Am. Ceram. Soc. 91(8), 2716 (2008)

    Article  CAS  Google Scholar 

  107. C. Ma, X. Tan, Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2) TiO3–xBaTiO3 ceramics. Solid State Commun. 150(33–34), 1497 (2010)

    Article  CAS  Google Scholar 

  108. Y. Hiruma, T. Watanabe, H. Nagata, T. Takenaka, Piezoelectric properties of (Bi1/2Na1/2)TiO3-based solid solution for lead-free high-power applications. Jpn. J. Appl. Phys. 47(9S), 7659 (2008)

    Article  CAS  Google Scholar 

  109. S. Zhang, H.J. Lee, T.R. Shrout, NBT based lead-free piezoelectric materials for high power applications. U.S. Patent No. 8, 501, 031. 6, (2013)

  110. P. Gerthsen, K. Härdtl, N. Schmidt, Correlation of mechanical and electrical losses in ferroelectric ceramics. J. Appl. Phys. 51(2), 1131 (1980)

    Article  CAS  Google Scholar 

  111. K. Hayashi, A. Ando, Y. Hamaji, Y. Sakabe, Study of the valence state of the manganese ions in PbTiO3 ceramics by means of ESR. Jpn. J. Appl. Phys. 37(9S), 5237 (1998)

    Article  CAS  Google Scholar 

  112. H. Nagata, T. Takenaka, Large-amplitude piezoelectric properties of KNbO3-based lead-free ferroelectric ceramics. Electron. Commun. Japan 96(3), 53 (2013)

    Article  Google Scholar 

  113. E. Gurdal, S. Ural, H. Park, S. Nahm, K. Uchino, High power characterization of (Na0.5K0.5)NbO3 based lead-free piezoelectric ceramics. Sens. Actuators A 200, 44 (2013)

  114. H. N. Shekhani, E. A. Gurdal, S. O. Ural, K. Uchino, Analysis of high power behavior in piezoelectric ceramics from a mechanical energy density perspective. arXiv preprint arXiv:1605.06685. (2018)

  115. S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu, H. Niimi, High-power piezoelectric vibration characteristics of textured SrBi2Nb2O9 ceramics. Jpn. J. Appl. Phys. 45(9S), 7455 (2006)

    Article  CAS  Google Scholar 

  116. H. Ogawa, S. Kawada, M. Kimura, K. Shiratsuyu, Y. Sakabe, High-power piezoelectric characteristics of textured bismuth layer structured ferroelectric ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2500 (2007)

    Article  Google Scholar 

  117. S. Kawada, H. Ogawa, M. Kimura, K. Shiratsuyu, Y. Higuchi, Relationship between vibration direction and high-power characteristics of < 001 > -textured SrBi2Nb2O9 ceramics. Jpn. J. Appl. Phys. 46(10S), 7079 (2007)

    Article  CAS  Google Scholar 

  118. Y. Noumura, Y. Hiruma, H. Nagata and T. Takenaka: High-power piezoelectric characteristics of Bi4Ti3O12–SrBi4Ti4O15-based ferroelectric ceramics. Japanese Journal of Applied Physics. 49(9S), 09MD02 (2010)

  119. S. Takahashi, S. Hirose, Vibration-level characteristics for iron-doped lead-zirconate-titanate ceramic. Jpn. J. Appl. Phys. 32, 2422 (1993)

    Article  CAS  Google Scholar 

  120. S.O. Ural, S. Tuncdemir, Y. Zhuang, K. Uchino, Development of a high power piezoelectric characterization system and its application for resonance/antiresonance mode characterization. Jpn. J. Appl. Phys. 48(5), 056509 (2009)

    Article  Google Scholar 

  121. U. Kenji, J. Zheng, J. Amod, Y.H. Chen and S. Yoshikawa: High power characterization of piezoelectric materials. Journal of Electroceramics. 2:1, 30 (1998)

  122. M. Umeda, K. Nakamura, S. Ueha, The measurement of high-power characteristics for a piezoelectric transducer based on the electrical transient response. Jpn. J. Appl. Phys. 37(9B), 5322 (1998)

    Article  CAS  Google Scholar 

  123. M. Slabki, J. Wu, M. Weber, P. Breckner, D. Isaia, K. Nakamura, J. Koruza, Anisotropy of the high-power piezoelectric properties of Pb(Zr, Ti)O3. J. Am. Ceram. Soc. 102(10), 6008 (2019)

    Article  CAS  Google Scholar 

  124. H. Shekhani, T. Scholehwar, E. Hennig, K. Uchino, Characterization of piezoelectric ceramics using the burst/transient method with resonance and antiresonance analysis. J. Am. Ceram. Soc. 100(3), 998 (2017)

    Article  CAS  Google Scholar 

  125. J.F. Blackburn, M.G. Cain, Non-linear piezoelectric resonance analysis using burst mode: a rigorous solution. J. Phys. D Appl. Phys. 40(1), 227 (2007)

    Article  CAS  Google Scholar 

  126. Qiang Zhang, Shengjun Shi and W. Chen: An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer. Ultrasonics. 66, 18 (2016)

  127. C.H. Yun, T. Ishii, K. Nakamura, S. Ueha, K. Akashi, A high power ultrasonic linear motor using a longitudinal and bending hybrid bolt-clamped Langevin type transducer. Jpn. J. Appl. Phys. 40(5S), 3773 (2001)

    Article  CAS  Google Scholar 

  128. S. Lin, Study on the multifrequency Langevin ultrasonic transducer. Ultrasonics 33(6), 445 (1995)

    Article  Google Scholar 

  129. Y. Peng, Y. Peng, X. Gu, J. Wang, H. Yu, A review of long range piezoelectric motors using frequency leveraged method. Sens. Actuators, A 235, 240 (2015)

    Article  CAS  Google Scholar 

  130. K. Uchino: Ferroelectric devices, Second Edition. (CRC Press, 2010), pp. 177

  131. J. Gallego-Juárez and K. Graff: Introduction to power ultrasonics, in Power Ultrasonics, (Elsevier, 2015), pp. 1

  132. L. Vernès, M. Vian, F. Chemat, Ultrasound and Microwave as Green Tools for Solid-Liquid Extraction, in Liquid-Phase Extraction (Elsevier, Amsterdam, 2020), p. 355

    Google Scholar 

  133. J.G. Webster, Encyclopedia of Electrical and Electronics Engineering (John Wiley, New York, 1999)

    Book  Google Scholar 

  134. G. Juárez and J. Antonio: Macrosonics: Phenomena, transducers and applications, (2002)

  135. J.A. Gallego Juarez: High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia. 3(1), 35 (2010)

  136. S. Zhang, S.M. Lee, D.H. Kim, H.Y. Lee, T.R. Shrout, Characterization of Mn-modified Pb(Mg1/3Nb2/3)O3–PbZrO3–PbTiO3 single crystals for high power broad bandwidth transducers. Appl. Phys. Lett. 93(12), 122908 (2008)

    Article  Google Scholar 

  137. T.J. Mason, Ultrasonic cleaning: an historical perspective. Ultrason. Sonochem. 29, 519 (2016)

    Article  CAS  Google Scholar 

  138. T. Tou, Y. Hamaguti, Y. Maida, H. Yamamori, K. Takahashi and Y. Terashima: Properties of (Bi0.5Na0.5)TiO3–BaTiO3–(Bi0.5Na0.5)(Mn1/3Nb2/3)O3 lead-free piezoelectric ceramics and its application to ultrasonic cleaner. Japanese Journal of Applied Physics. 48(7), 07GM03 (2009)

  139. D. Yamaguchi, T. Kanda, K. Suzumori, An ultrasonic motor for cryogenic temperature using bolt-clamped Langevin-type transducer. Sensors and Actuators a-Physical. 184, 134 (2012)

    Article  CAS  Google Scholar 

  140. G.T. Haar, C. Coussios, High intensity focused ultrasound: physical principles and devices. Int. J. Hyperthermia 23(2), 89 (2007)

  141. T. Bove, T. Zawada, J. Serup, A. Jessen, M. Poli, High-frequency (20-MHz) high-intensity focused ultrasound (HIFU) system for dermal intervention: preclinical evaluation in skin equivalents. Skin Res. Technol. 25(2), 217 (2019)

    Article  Google Scholar 

  142. F. Wu, W.Z. Chen, J. Bai, J.Z. Zou, Z.L. Wang, H. Zhu, Z.B. Wang, Pathological changes in human malignant carcinoma treated with high-intensity focused ultrasound. Ultrasound Med. Biol. 27(8), 1099 (2001)

    Article  CAS  Google Scholar 

  143. S. Madersbacher, C. Kratzik, N. Szabo, M. Susani, L. Vingers, M. Marberger, Tissue ablation in benign prostatic hyperplasia with high-intensity focused ultrasound. Eur. Urol. 23, 39 (1993)

    Article  Google Scholar 

  144. J.E. Kennedy, G.R. ter Haar, D. Cranston, High intensity focused ultrasound: surgery of the future? The British journal of radiology. 76(909), 590 (2003)

    Article  CAS  Google Scholar 

  145. X. Fan, K. Hynynen, Ultrasound surgery using multiple sonications—treatment time considerations. Ultrasound Med. Biol. 22(4), 471 (1996)

    Article  CAS  Google Scholar 

  146. X. Gen, T. Ritter, K. Shung, 1-3 piezoelectric composites for high power ultrasonic transducer applications, in 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027), (2, IEEE, 1999). 1191

  147. W.A. Smith, New opportunities in ultrasonic transducers emerging from innovations in piezoelectric materials, in New Developments in Ultrasonic Transducers and Transducer Systems, (1733, International Society for Optics and Photonics, 1992). 3

  148. H. Jae Lee, S. Zhang, X. Geng and T.R. Shrout, Electroacoustic response of 1-3 piezocomposite transducers for high power applications. Appl Phys Lett. 101(25), 253504 (2012)

  149. H.J. Lee, S. Zhang, Design of low-loss 1-3 piezoelectric composites for high-power transducer applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(9), 1969 (2012)

    Article  Google Scholar 

  150. H. Jae Lee, S. Zhang, R.J. Meyer, N.P. Sherlock, T.R. Shrout, Characterization of piezoelectric ceramics and 1-3 composites for high power transducers. Appl. Phys. Lett. 101(3), 032902 (2012)

  151. A. Mathieson, D.A. DeAngelis, Analysis of lead-free piezoceramic-based power ultrasonic transducers for wire bonding. IEEE Trans. Ultrason. Ferroelectrics Frequency Control 63(1), 156 (2015)

    Article  Google Scholar 

  152. S.-L. Yang, S.-M. Chen, C.-C. Tsai, C.-S. Hong, S.-Y. Chu, Fabrication of high-power piezoelectric transformers using lead-free ceramics for application in electronic ballasts. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60(2), 408 (2013)

    Article  Google Scholar 

  153. E.A. Gurdal, S.O. Ural, H.-Y. Park, S. Nahm, K. Uchino, High power (Na0.5K0.5)NbO3-based lead-free piezoelectric transformer. Jpn. J. Appl. Phys. 50(2), (2011)

  154. J. Jin, D. Wan, Y. Yang, Q. Li, M. Zha, A linear ultrasonic motor using (K0.5Na0.5)NbO3 based lead-free piezoelectric ceramics. Sens. Actuators A 165(2), 410 (2011)

Download references

Acknowledgment

This work was supported by National Nature Science Foundation of China (Grant Nos. 51822,206, 51761135118), and the Scientific and Technological Project of State Grid Corporation of China (Project number: 5500-202024252A-0-0-00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Gong or Ke Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.N., Thong, HC., Zhu, ZX. et al. Hardening effect in lead-free piezoelectric ceramics. Journal of Materials Research 36, 996–1014 (2021). https://doi.org/10.1557/s43578-020-00016-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43578-020-00016-1

Keywords

Navigation