Skip to main content
Log in

Fatigue and fracture of nanostructured metals and alloys

  • Review Article
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Metals and alloys with nanoscale structural features (such as grain size or twin thickness <100 nm) exhibit exceptional strength and unusual deformation mechanisms. But, the suppressed dislocation slip, grain-boundary instability, and limited strain hardening in these nanostructured metals can be detrimental to fatigue and fracture properties. In this article, recent advances in understanding the structural origins of fatigue and fracture resistance of nanocrystalline and nanotwinned metals and alloys are reviewed. Based on this understanding, microstructural engineering strategies, such as gradient grain size, controlled boundary mobility, or hierarchical nanotwins, alter the deformation modes and provide promising paths to develop nanostructured materials with improved fatigue and fracture properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. S.Suresh, Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, UK, 1998).

    Book  Google Scholar 

  2. P. Peralta, C. Laird, Fatigue of metals, in Physical Metallurgy (Fifth Edition). D.E. Laughlin, K. Hono, Ed. (Elsevier, Oxford, UK, 2014), p. 1765

    Chapter  Google Scholar 

  3. H. Gleiter, Acta Mater. 48, 1 (2000)

    Article  CAS  Google Scholar 

  4. H. Mughrabi, H.W. Höppel, Int. J. Fatigue 32, 1413 (2010)

    Article  CAS  Google Scholar 

  5. C.L. Tan, K.S. Zhou, W.Y. Ma, P.P. Zhang, M. Liu, T.C. Kuang, Mater. Des. 134, 23 (2017)

    Article  CAS  Google Scholar 

  6. Z. Fu, L. Jiang, J.L. Wardini, B.E. MacDonald, H. Wen, W. Xiong, D. Zhang, Y. Zhou, T.J. Rupert, W. Chen, Sci. Adv. 4, eaat8712 (2018)

    Article  CAS  Google Scholar 

  7. W.M. Mook, R. Raghavan, J.K. Baldwin, D. Frey, J. Michler, N.A. Mara, A. Misra, Mater. Res. Lett. 1, 102 (2013)

    Article  CAS  Google Scholar 

  8. Y.Q. Wang, R. Fritz, D. Kiener, J.Y. Zhang, G. Liu, O. Kolednik, R. Pippan, J. Sun, Acta Mater. 180, 73 (2019)

    Article  CAS  Google Scholar 

  9. M. Zappalorto, M. Salviato, M. Quaresimin, Compos. Sci. Technol. 72, 1683 (2012)

    Article  CAS  Google Scholar 

  10. B.-J. Kim, T. Haas, A. Friederich, J.-H. Lee, D.-H. Nam, J.R. Binder, W. Bauer, I.-S. Choi, Y.-C. Joo, P.A. Gruber, Nanotechnology 25, 125706 (2014)

    Article  Google Scholar 

  11. H. Mughrabi, H.W. Höppel, M. Kautz, Scr. Mater. 51, 807 (2004)

    Article  CAS  Google Scholar 

  12. L. Kunz, P. Lukáš, A. Svoboda, Mater. Sci. Eng. A 424, 97 (2006)

    Article  Google Scholar 

  13. A. Pineau, A. Amine Benzerga, T. Pardoen, Acta Mater. 107, 508 (2016)

    Article  CAS  Google Scholar 

  14. N.M. Heckman, H.A. Padilla, J.R. Michael, C.M. Barr, B.G. Clark, K. Hattar, B.L. Boyce, Int. J. Fatigue 134, 105472 (2020)

    Article  CAS  Google Scholar 

  15. M.A. Meyers, A. Mishra, D.J. Benson, Prog. Mater Sci. 51, 427 (2006)

    Article  CAS  Google Scholar 

  16. T.A. Furnish, A. Mehta, D. Van Campen, D.C. Bufford, K. Hattar, B.L. Boyce, J. Mater. Sci. 52, 46 (2017)

    Article  CAS  Google Scholar 

  17. C.C. Koch, D.G. Morris, K. Lu, A. Inoue, MRS Bull. 24, 54 (1999)

    Article  CAS  Google Scholar 

  18. H.W. Höppel, Z.M. Zhou, H. Mughrabi, R.Z. Valiev, Philos. Mag. A 82, 1781 (2002)

    Article  Google Scholar 

  19. M. Jin, A.M. Minor, E.A. Stach, J.W. Morris, Acta Mater. 52, 5381 (2004)

    Article  CAS  Google Scholar 

  20. T.J. Rupert, D.S. Gianola, Y. Gan, K.J. Hemker, Science 326, 1686 (2009)

    Article  CAS  Google Scholar 

  21. T.H. Fang, W.L. Li, N.R. Tao, K. Lu, Science 331, 1587 (2011)

    Article  CAS  Google Scholar 

  22. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, Y.T.T. Zhu, Proc. Nat. Acad. Sci. USA 111, 7197 (2014)

    Article  CAS  Google Scholar 

  23. X.Y. Li, L. Lu, J.G. Li, X. Zhang, H.J. Gao, Nat. Rev. Mater. (2020).

  24. E. Ma, T. Zhu, Mater. Today 20, 323 (2017)

    Article  CAS  Google Scholar 

  25. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu, Science 304, 422 (2004)

    Article  CAS  Google Scholar 

  26. L. Lu, X. Chen, X. Huang, K. Lu, Science 323, 607 (2009)

    Article  CAS  Google Scholar 

  27. X. Zhang, H. Wang, X.H. Chen, L. Lu, K. Lu, R.G. Hoagland, A. Misra, Appl. Phys. Lett. 88, 173116 (2006)

    Article  Google Scholar 

  28. A.M. Hodge, Y.M. Wang, T.W. Barbee, Scr. Mater. 59, 163 (2008)

    Article  CAS  Google Scholar 

  29. K. Lu, Nat. Rev. Mater. 16019 (2016).

  30. D.C. Bufford, D. Stauffer, W.M. Mook, S.A.S. Asif, B.L. Boyce, K. Hattar, Nano Lett. 16, 4946 (2016)

    Article  CAS  Google Scholar 

  31. T.A. Furnish, D.C. Bufford, F. Ren, A. Mehta, K. Hattar, B.L. Boyce, Scr. Mater. 143, 15 (2018)

    Article  CAS  Google Scholar 

  32. C. Kunka, B.L. Boyce, S.M. Foiles, R. Dingreville, Nanoscale 11, 22456 (2019)

    Article  CAS  Google Scholar 

  33. H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, H. Mughrabi, Int. J. Fatigue 28, 1001 (2006)

    Article  Google Scholar 

  34. H.A. Padilla, B.L. Boyce, Exp. Mech. 50, 5 (2010)

    Article  CAS  Google Scholar 

  35. B.L. Boyce, H.A. Padilla II, Metall. Mater. Trans. A 42A, 1793 (2011)

    Article  Google Scholar 

  36. R. Spolenak, L. Sauter, C. Eberl, Scr. Mater. 53, 1291 (2005)

    Article  CAS  Google Scholar 

  37. J.F. Panzarino, J.J. Ramos, T.J. Rupert, Model. Simul. Mater. Sci. Eng. 23, 025005 (2015)

    Article  CAS  Google Scholar 

  38. J.F. Panzarino, Z.L. Pan, T.J. Rupert, Acta Mater. 120, 1 (2016)

    Article  CAS  Google Scholar 

  39. S.M. Foiles, F. Abdeljawad, A. Moore, B.L. Boyce, Modell. Simul. Mater. Sci. Eng. 27, 025008 (2019)

    Article  CAS  Google Scholar 

  40. I.A. Ovid’ko, J. Mater. Sci. 42, 1694 (2007)

    Article  CAS  Google Scholar 

  41. A. Hohenwarter, R. Pippan, Scr. Mater. 64, 982 (2011)

    Article  CAS  Google Scholar 

  42. J.A. Sharon, H.A. Padilla II., B.L. Boyce, J. Mater. Res. 28, 1539 (2013)

    Article  CAS  Google Scholar 

  43. K. Hattar, J. Han, M. Saif, I.M. Robertson, J. Mater. Res. 20, 1869 (2005)

    Article  CAS  Google Scholar 

  44. W.L. Li, J.C.M. Li, Philos. Mag. A 59, 1245 (1989)

    Article  Google Scholar 

  45. Y.G. Liu, J.Q. Zhou, L. Wang, S. Zhang, Y. Wang, Mater. Sci. Eng. A 528, 4615 (2011)

    Article  Google Scholar 

  46. Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, W.O. Soboyejo, Metall. Mater. Trans. A 39A, 1145 (2008)

    Article  CAS  Google Scholar 

  47. D. Farkas, H. Van Swygenhoven, P.M. Derlet, Phys. Lett. B 66, (2002).

  48. J. Li, A.K. Soh, Scr. Mater. 69, 283 (2013)

    Article  CAS  Google Scholar 

  49. G.Q. Xu, M.J. Demkowicz, Phys. Rev. Lett. 111, (2013).

  50. T. Chookajorn, H.A. Murdoch, C.A. Schuh, Science 337, 951 (2012)

    Article  CAS  Google Scholar 

  51. M.A. Gibson, C.A. Schuh, Acta Mater. 95, 145 (2015)

    Article  CAS  Google Scholar 

  52. M.A. Gibson, C.A. Schuh, Scr. Mater. 113, 55 (2016)

    Article  CAS  Google Scholar 

  53. N.M. Heckman, S.M. Foiles, C.J. O’Brien, M. Chandross, C.M. Barr, N. Argibay, K. Hattar, P. Lu, D.P. Adams, B.L. Boyce, Nanoscale 10, 21231 (2018)

    Article  CAS  Google Scholar 

  54. K. Lu, J. Lu, Mater. Sci. Eng. A 375, 38 (2004)

    Article  Google Scholar 

  55. T. Roland, D. Retraint, K. Lu, J. Lu, Scr. Mater. 54, 1949 (2006)

    Article  CAS  Google Scholar 

  56. Q.S. Pan, J.Z. Long, L.J. Jing, N.R. Tao, L. Lu, Acta Mater. 196, 252 (2020)

    Article  CAS  Google Scholar 

  57. Q.S. Pan, L. Lu, Scr. Mater. 187, 301 (2020)

    Article  CAS  Google Scholar 

  58. J.Z. Long, Q.S. Pan, N.R. Tao, M. Dao, S. Suresh, L. Lu, Acta Mater. 166, 56 (2019)

    Article  CAS  Google Scholar 

  59. R. Cao, Q. Yu, J. Pan, Y. Lin, A. Sweet, Y. Li, R.O. Ritchie, Mater. Today 32, 94 (2020)

    Article  Google Scholar 

  60. Z. Ma, J. Liu, G. Wang, H. Wang, Y. Wei, H. Gao, Sci. Rep. 6, 22156 (2016)

    Article  CAS  Google Scholar 

  61. L. Sun, X. He, J. Lu, NPJ Comput. Mater. 4, 1 (2018)

    Article  Google Scholar 

  62. Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Nature 551, 214 (2017)

    Article  CAS  Google Scholar 

  63. X.Y. Li, M. Dao, C. Eberl, A.M. Hodge, H.J. Gao, MRS Bull. 41, 298 (2016)

    Article  Google Scholar 

  64. Q.S. Pan, Q.H. Lu, L. Lu, Acta Mater. 61, 1383 (2013)

    Article  CAS  Google Scholar 

  65. Q.S. Pan, L. Lu, Acta Mater. 81, 248 (2014)

    Article  CAS  Google Scholar 

  66. C.J. Shute, B.D. Myers, S. Xie, S.Y. Li, T.W. Barbee Jr., A.M. Hodge, J.R. Weertman, Acta Mater. 59, 4569 (2011)

    Article  CAS  Google Scholar 

  67. N.M. Heckman, M.F. Berwind, C. Eberl, A.M. Hodge, Acta Mater. 144, 138 (2018)

    Article  CAS  Google Scholar 

  68. Z.S. You, X.Y. Li, L.J. Gui, Q.H. Lu, T. Zhu, H.J. Gao, L. Lu, Acta Mater. 61, 217 (2013)

    Article  CAS  Google Scholar 

  69. Q.H. Lu, Z.S. You, X.X. Huang, N. Hansen, L. Lu, Acta Mater. 127, 85 (2017)

    Article  CAS  Google Scholar 

  70. L.B. Freund, J. Appl. Mech. 54, 553 (1987)

    Article  CAS  Google Scholar 

  71. Z.S. You, L. Lu, K. Lu, Acta Mater. 59, 6927 (2011)

    Article  CAS  Google Scholar 

  72. A. Vinogradov, S. Hashimoto, Mater. Trans. JIM 42, 74 (2001)

    Article  CAS  Google Scholar 

  73. Q.S. Pan, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Acta Mater. 175, 477 (2019)

    Article  CAS  Google Scholar 

  74. A. Singh, L. Tang, M. Dao, L. Lu, S. Suresh, Acta Mater. 59, 2437 (2011)

    Article  CAS  Google Scholar 

  75. Z.S. You, S.D. Qu, S.S. Luo, L. Lu, Materials 7, 100430 (2019)

    Google Scholar 

Download references

Acknowledgments

L.L. acknowledges financial support by the National Natural Science Foundation of China (NSFC, Grant Nos. U1608257 and 51931010), the Key Research Program of Frontier Science and International partnership program (Grant No. GJHZ2029), CAS, and LiaoNing Revitalization Talents Program (Grant No. XLYC1802026). Q.P. acknowledges support by NSFC (Grant Nos. 51601196, 52071321) and the Youth Innovation Promotion Association CAS (Grant No. 2019196). B.L.B. and K.H. were supported by the US Department of Energy (DOE) Office of Basic Energy Science, Materials Science and Engineering Division. B.L.B. and K.H. would like to acknowledge D. Bufford for his work in obtaining Figure 1, C. Kunka for compiling data for Figure 2, and acknowledge use of the microscopy facilities at the Center for Integrated Nanotechnologies for this work. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under Contract No. DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the US DOE or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Lu or Brad L. Boyce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Pan, Q., Hattar, K. et al. Fatigue and fracture of nanostructured metals and alloys. MRS Bulletin 46, 258–264 (2021). https://doi.org/10.1557/s43577-021-00054-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43577-021-00054-y

Keywords

Navigation