Skip to main content
Log in

Neutron Detection Signatures at Zero Bias in Novel Semiconducting Boron Carbide/Pyridine Polymers

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Novel and more conventional boron carbides were combined with n-type silicon to make heterojunction diodes, with neutron capture signal at zero applied bias. The boron carbides were based on the cross linking of closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2-B10C2H12), and cross linking based on the combination of closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2- B10C2H12) and pyridine. In the latter devices, pyridine concentration was varied; samples with a closo-1,2-dicarbadodecaborane (ortho-carborane; 1,2- B10C2H12) to pyridine ratio of 1:1 (BC:Py1) and 1:3 (BC:Py3). The result is a nonvolatile robust p-type semiconductor of boron carbide (B10C2Hx):(C5NHx)y. The I(V) curves for the resulting heterojunction diodes exhibit strong rectification where the normalized reverse bias leakage currents are largely unperturbed with increasing pyridine inclusion. The devices are largely gamma insensitive and yet neutron voltaic properties of these boron carbides is demonstrated. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the characteristic signatures of complete charge collection from boron neutron capture generated electron-hole pair production. These results, nonetheless, suggest that modifications to boron carbide may result in better neutron voltaic materials with linking groups chosen from family of aromatic compounds that stretch between borazine (B3N3H6) and benzene that point the way to a whole family of future studies that may ultimately lead to boron carbides better suited to low power and low flux neutron detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Caruso, J.Phys. Condens. Matter. 22 (2010) 1–32. doi: 10.1088/0953-8984/22/44/443201.

    Article  Google Scholar 

  2. A.N. Caruso, R.B. Billa, S. Balaz, J.I. Brand, P.A. Dowben, J.Phys.Condens. Matter. 16 (2004) L139–L146. doi: 10.1088/0953-8984/16/10/L04.

    Article  CAS  Google Scholar 

  3. B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I. Brand, P.A. Dowben, J.P. Claassen, Appl. Phys. Lett. 80 (2002) 3644–3646. doi: 10.1063/1.1477942.

    Article  CAS  Google Scholar 

  4. B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I Brand, J.P. Claassen, N.M. Boag, P.A. Dowben, Proc. SPIE 4785 (2002) 226–233. doi: 10.1117/12.453923.

    Google Scholar 

  5. S. Adenwalla, R. Billa, J.I. Brand, E. Day, M.J. Diaz, A. Harken, A. McMullen-Gunn, R. Padmanabhan, B.W. Robertson, Proc. SPIE 5199 (2004) 70–74. doi: 10.1117/12.506646.

    Google Scholar 

  6. K. Osberg, N. Schemm, S. Balkir, J.I. Brand, M.S Hallbeck, P.A. Dowben, M.W. Hoffman, IEEE Sens. J. 6 (2006) 1531–1538. doi: 10.1109/JSEN.2006.883905.

    Article  CAS  Google Scholar 

  7. K. Osberg, N. Schemm, S. Balkir, J.I Brand, M.S. Hallbeck, P.A. Dowben, IEEE Int. Symp. Circ. S (2006) 1179–1182. doi: 10.1109/ISCAS.2006.1692801.

    Google Scholar 

  8. A.N. Caruso, P.A. Dowben, S. Balkir, N. Schemm, K. Osberg, R.W. Fairchild, O.B. Flores, S. Balaz, A.D. Harken, B.W. Robertson, J.I. Brand, Mater. Sci. Eng. 135 (2006) 129–133. doi: 10.1016/j.mseb.2006.08.049.

    Article  CAS  Google Scholar 

  9. E. Day, M.J. Diaz, S. Adenwalla, J. Phys. D: Appl. Phys. 39 (2006) 2920–2924. doi: 10.1088/0022 3727/39/14/007.

    Article  CAS  Google Scholar 

  10. N. Hong, J. Mullins, K. Foreman, S. Adenwalla, J. Phys. D: Appl. Phys. 43 (2010) 275101. doi: 10.1088/0022-3727/43/27/275101.

    Article  Google Scholar 

  11. D. Simeone, C. Mallet, P. Dubuisson, G. Baldinozzi, C Gervais, J. Maquet, J. Nuclear Materials 277 (2000) 1–10. doi: 10.1016/S0022-3115(99)00149-X.

    Article  CAS  Google Scholar 

  12. D. Emin, Journal of Solid State Chemistry 179 (2006) 2791–2798. doi: 10.1016/j.jssc.2006.01.014.

    Article  CAS  Google Scholar 

  13. M. Carrard, D. Emin, and L. Zuppiroli, Phys. Rev. 51 (1995) 11270–11274. doi: 10.1103/PhysRevB.51.11270.

    Article  CAS  Google Scholar 

  14. A. N. Caruso, J. I. Brand, P.A. Dowben, Boron carbide particle detectors, United States Patent 7,368,794, issued May 6, 2008.

  15. F. L. Pasquale, Y. Li, J.C. Du, J.A. Kelber, J.Phys. Cond. Matter 25 (2013) 105801. doi: 10.1088/0953-8984/25/10/105801.

    Article  Google Scholar 

  16. F. L. Pasquale, R. James, R. Welch, E. Echeverria, P. A. Dowben, J. A. Kelber, ECS Transactions 53 (2013) 303–310. doi: 10.1149/05301.0303ecst.

    Article  Google Scholar 

  17. F.L. Pasquale, J. Liu, P.A. Dowben, J.A. Kelber, Materials Chemistry And Physics 133 (2012) 901–906. doi: 10.1016/j.matchemphys.2012.01.114.

    Article  CAS  Google Scholar 

  18. Frank A. Valente and Herbert Ivan Zagor, Phys. Rev. 69 (1946) 55. doi: 10.1103/PhysRev.69.55.

    Article  CAS  Google Scholar 

  19. G. A. Bartholomew and P. J. Campion, Canadian Journal of Physics 35 (1957) 1347. doi: 10.1139/p57-147.

    Article  CAS  Google Scholar 

  20. J. Meissner, H. Schatz, H. Herndl, M. Wiescher, H. Beer, F. Käppler, Phys. Rev. C 53 (1996) 977. doi: 10.1103/PhysRevC.53.977.

    Article  CAS  Google Scholar 

  21. E. T. Jurney, J. W. Starner, J. E. Lynn, S. Raman, Phys. Rev. C 56 (1997) 118. doi: 10.1103/PhysRevC.56.118.

    Article  CAS  Google Scholar 

  22. H. I. Zagor, F. A. Valente, Physical Review 67 (1945) 133.

    Article  CAS  Google Scholar 

  23. R. James; F.L. Pasquale, J.A. Kelber, Journal of Physics: Condensed Matter 25 (2013) 355004. doi:10.1088/0953-8984/25/35/355004.

    Google Scholar 

  24. E. Echeverria, F.L. Pasquale, J.A. Colón Santana, L. Zhang, R. James, A. Sokolov, J.A. Kelber, and P.A. Dowben, Mat. Lett. 110 (2013) 20–23. doi: 10.1016/j.matlet.2013.08.009.

    Article  CAS  Google Scholar 

  25. E. Echeverría, R. James, U. Chiluwal, F. L. Pasquale, J. A. Colón Santana, R. Gapfizi, J.-D. Tae, M. S. Driver, A. Enders, J. A. Kelber and P.A. Dowben, Applied Physics A (2014), in press; DOI 10.1007/s00339-014-8778-4.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Defense Threat Reduction Agency (Grant No. HDTRA1-09-1-0060), and the National Aeronautics and Space Administration through grant 13-EPSCoR-0012. The authors would like to thank Adrien LaVoie for supplying the Si(100) wafers and Shireen Adenwalla for technical assistance and discussion, Gregory S. Engel for the suggestion of pyrazine, and A.N. Caruso, for suggestions regarding the signal to noise issues.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverria, E., James, R., Pasquale, F.L. et al. Neutron Detection Signatures at Zero Bias in Novel Semiconducting Boron Carbide/Pyridine Polymers. MRS Online Proceedings Library 1743, 51–56 (2015). https://doi.org/10.1557/opl.2015.352

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.352

Navigation