Skip to main content

Advertisement

Log in

Cross-Linked Carbon Nanotube Heat Spreader

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

Among the exceptional properties of isolated individual carbon nanotubes (CNTs), exceptional thermal conductivity along their axis has been demonstrated, However they have also shown poor thermal transfer between adjacent CNTs. Thick bundles of aligned CNTs have been used as heat pipes, but the thermal input and output power densities are the same, providing no heat spreading effect. We demonstrate the use of energetic argon ion beams to join overlapping CNTs in a thin film to form an interpenetrating network with an isotropic thermal conductivity of 2150 W/m K. Such thin films may be used as heat spreaders to enlarge the thermal footprint of laser diodes and CPU chips, for example, for enhanced cooling. At higher ion energies and fluence, the CNTs appear to collapse and reform, aligned parallel to the ion beam axis, and form dense high aspect ratio tapered structures. The high surface area of these structures lends themselves to applications in energy storage, for example. We consider the mechanisms of energetic ion interaction with CNTs and junction formation of two overlapping CNTs during the subsequent self-healing process, as well as the formation of high aspect ratio structures under more extreme conditions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shinde and J. Goela, High Thermal Conductivity Materials, (Springer, 2006).

    Book  Google Scholar 

  2. L. Yeh, R. Chu, and D. Agonafer, Thermal Management of Microelectronic Equipment, (ASME Press, 2002).

    Book  Google Scholar 

  3. H. Lee, Thermal Design: Heat sinks, Thermoelectrics, Heat Pipes, Compact Heat Exchangers, and Solar Cells, (Wiley, 2010).

    Book  Google Scholar 

  4. S. Rossi, M. Alomari, Y. Zhang, S. Bychikhin, D. Pogany, J. Weaver and E. Kohn, Diamond and Related Materials 40, 69–74 (2013).

    Article  CAS  Google Scholar 

  5. S. Berber, Y. Kwon and D. Tomanek, PRL 84(20), 4613–4616 (2000).

    Article  CAS  Google Scholar 

  6. P. Kim, L. Shi, A. Madjumdar and P McEuen., PRL 87(21), 215502 (2001).

    Article  CAS  Google Scholar 

  7. Y. Kwon, S. Saito and D. Tomanek, Phys. Rev. B 58, R13314 (1998).

    Article  CAS  Google Scholar 

  8. K. Schwab, E. Henriksen, J. Worlock and M. Roukes, Nature 404, 974 (2000).

    Article  CAS  Google Scholar 

  9. D. Yang, Q. Zhang, G. Chen, S. Yoon, J. Ahn, S. Wang, Q. Zhou, Q. Wang and J. Li, Physical Review B 66, 165440 (2002).

    Article  Google Scholar 

  10. S. Shinde and J. Goela, High Thermal Conductivity Materials, (Springer, 2006) 227–265.

    Book  Google Scholar 

  11. J. Rodriguez-Manzo, A. Krasheninnikov and F. Banhart, Chem. Phys. Chem. 13, 2596–2600 (2012).

    Article  CAS  Google Scholar 

  12. A. Krasheninnikov and F. Banhart, Nature Materials 6, 723–733 (2007).

    Article  CAS  Google Scholar 

  13. A. Krasheninnikov, K. Nordlund and J. Keinonen, Physical Review B 66, 245403 (2002).

    Article  Google Scholar 

  14. A. Krasheninnikov, K. Nordlund, J. Keinonen and F. Banhart, Nucl. Instrum. Meth. B 202, 224–229 (2003).

    Article  CAS  Google Scholar 

  15. Q. Wei, J. D’Arcy-Gall, P. Ajayan and G. Ramanath, Applied Physics Letters 83, 3581 (2003).

    Article  CAS  Google Scholar 

  16. M. Loya, J. Park, L. Chen, K. Brammer, P. Bandaru and S. Jin, Nano 3(6), 449–454 (2008).

    Article  CAS  Google Scholar 

  17. G. Ozin and A. Arsenault, Nanochemistry: A Chemical Approach to Nanomaterials, (Royal Society of Chemistry Publishing, 2005).

    Google Scholar 

  18. E. Salonen, A. Krasheninnikov and K. Nordlund, Nucl. Instrum. Meth. B 193, 603–608 (2002).

    Article  CAS  Google Scholar 

  19. A. Krasheninnikov, K. Nordlund, and J. Keinonen, Physical Review B 65, 165423 (2002).

    Article  Google Scholar 

  20. A. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen and J. Keinonen, Physical Review B 63, 245405 (2001).

    Article  Google Scholar 

  21. A. Krasheninnikov. and K. Nordlund, Journal of Applied Physics 107, 071301 (2010).

    Article  Google Scholar 

  22. A. Krasheninnikov, K. Nordlund, P. Lehtinen, A. Foster, A. Ayuela, and R. Nieminen, Carbon 42, 1021–1025 (2004).

    Article  CAS  Google Scholar 

  23. Y. Gan, J. Kotakoski, A. Krasheninnikov, K. Nordlundand f. Banhart, New Journal of Physics 10, 023022 (2008).

    Article  Google Scholar 

  24. D. Cahill, Rev. Sci. Instrum. 61, 802 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The author is grateful to Dr. Vladimir Samuilov of the Department of Materials Science and Engineering, SUNY at Stony Brook, NY for his assistance in performing the thermal conductivity measurements, and also to the Center for Functional Nanomaterials of Brookhaven National Lab, Upton, NY for their assistance in preparing and analyzing CNT films under DOE contract DE-AC02-98CH10886. Funding for this project was provided by the author.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konesky, G.A. Cross-Linked Carbon Nanotube Heat Spreader. MRS Online Proceedings Library 1752, 131–136 (2015). https://doi.org/10.1557/opl.2014.930

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2014.930

Navigation