Skip to main content

Advertisement

Log in

Highly Flexible Energy Storage Electrodes Based on In Situ Synthesis of Graphene/Polyselenophene Nanohybrid Materials

  • Published:
MRS Online Proceedings Library Aims and scope

Abstract

A new class of graphene–polyselenophene (PSe) hybrid nanocomposite was successfully synthesized using an in situ synthetic method. The synthesized graphene–PSe nanocomposite exhibited unique properties including a large voltage window, high conductivity, and good mechanical properties. The graphene–PSe nanohybrid reduced the dynamic resistance of electrolyte ions and enabled high charge–discharge rates, thereby enabling high-performance supercapacitance. The results were attributed to synergetic effects between graphene and conducting polymers (CPs), which enhanced charge transport, surface area, and hybrid supercapacitance by combining the properties of electrolytic double-layer capacitors (EDLCs) with those of psedocapacitors. Additionally, a flexible supercapacitor based on the graphene–PSe nanohybrid was successfully demonstrated. To fabricate binder-free supercapacitors, chemical vapor deposition (CVD) and vapor deposition polymerization (VDP) methods were employed. The fabricated all-solid-state supercapacitor exhibited outstanding mechanical and electrochemical performance, even after several bending motions. The novel graphene–PSe nanocomposite material is promising for new energy storage and conversion applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Cao, H.-s. Kim, N. Pimparkar, J. P. Kulkarni, C. Wang, M. Shim, K. Roy, M. A. Alam, J. A. Rogers, Nature 2008, 454, 495

    Article  CAS  Google Scholar 

  2. S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, D. B. Janes, Nat. Nanotechnol. 2007, 2, 378

    Article  CAS  Google Scholar 

  3. C. Liu, Z. Yu, D. Neff, A. Zhamu, B. Z. Jang, Nano Lett. 2010, 10, 4863

    Article  CAS  Google Scholar 

  4. D.-W. Wang, F. Li, J. Zhao, W. Ren, Z.-G. Chen, J. Tan, Z.-S. Wu, I. Gentle, G. Q. Lu, H.-M. Cheng, ACS Nano 2009, 3, 1745

    Article  CAS  Google Scholar 

  5. M. Mastragostino, C. Arbizzani, F. Soavi, J. Power Sources 2001, 97–98, 812

    Article  Google Scholar 

  6. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 2012, 41, 797

    Article  CAS  Google Scholar 

  7. R. B. Ambade, S. B. Ambade, N. K. Shrestha, Y.-C. Nah, S.-H. Han, W. Lee, S.-H. Lee, Chem. Commun. 2013, 49, 2308

    Article  CAS  Google Scholar 

  8. A. Patra, M. Bendikov, J. Mater. Chem. 2010, 20, 422

    Article  CAS  Google Scholar 

  9. S. Boukhalfa, K. Evanoff, G. Yushin, Energy Environ. Sci. 2012, 5, 6872

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.W., Jang, J. Highly Flexible Energy Storage Electrodes Based on In Situ Synthesis of Graphene/Polyselenophene Nanohybrid Materials. MRS Online Proceedings Library 1727, 13–18 (2014). https://doi.org/10.1557/opl.2015.23

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/opl.2015.23

Navigation