Skip to main content
Log in

Additive manufacturing and processing of architected materials

  • Three-Dimensional Architected Materials and Structures
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Architected materials are a unique and emerging class of materials where performance is fundamentally controlled by geometry at multiple length scales, from the nano- to the macroscale, rather than chemical composition alone. As a result, the realization of these remarkable materials is contingent upon the ability to faithfully reproduce the designed architecture. This presents fundamental challenges in fabrication due to the required three-dimensional complexity, multiple length scales, range of material constituents, possibility of multiple materials in a single architecture, and overall manufacturing throughput. Additive manufacturing (AM) processes can provide solutions to some of these challenges and are discussed in this article. Specifically, light-based and extrusion-based processes and associated materials are presented with an emphasis on recent developments, including volumetric additive manufacturing, and on-the-fly mixing of materials in extrusion-based printing systems. While remarkable advancements have been made in AM for architected materials, bringing these materials and processes to industrial realization remains a significant challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. J.E. Pavlosky, L.G. St. Leger, Apollo Experience Report—Thermal Protection Subsystem (NASA Technical Note TN D-7564, NASA, Washington, DC, (1974).

  2. L.R. Meza, S. Das, J.R. Greer, Science 345, 1322 (2014).

    Google Scholar 

  3. L.R. Meza, A.J. Zelhofer, N. Clarke, A.J. Mateos, D.M. Kochmann, J.R. Greer, Proc. Natl. Acad. Sci. U.S.A. 112, 11502 (2015).

    Google Scholar 

  4. J. Bauer, A. Schroer, R. Schwaiger, O. Kraft, Nat. Mater. 15, 438 (2016).

    Google Scholar 

  5. X. Zheng, W. Smith, J.A. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N.X. Fang, N. Rodriguez, T. Weisgraber, C.M. Spadaccini, Nat. Mater. 15, 1100 (2016).

    Google Scholar 

  6. J.B. Hopkins, K.J. Lange, C.M. Spadaccini, J. Mech. Des. 135, 061004 (2013).

    Google Scholar 

  7. Q. Wang, J.A. Jackson, Q. Ge, J.B. Hopkins, C.M. Spadaccini, N.X. Fang, Phys. Rev. Lett. 117, 175901 (2016).

    Google Scholar 

  8. E. Munch, M.E. Launey, D.H. Alsem, E. Saiz, A.P. Tomsia, R.O. Ritchie, Science 322, 1516 (2008).

    Google Scholar 

  9. J.C. Weaver, G.W. Milliron, A. Miserez, K. Evans-Lutterodt, S. Herrera, I. Gallana, W.J. Mershon, B. Swanson, P. Zavattieri, E. DiMasi, D. Kisailus, Science 336, 1275 (2012).

    Google Scholar 

  10. B. Yao, S. Chandrasekaran, J. Zhang, W. Xiao, F. Qian, C. Zhu, E.B. Duoss, C.M. Spadaccini, M.A. Worsley, Y. Li, Joule 3, 459 (2018).

    Google Scholar 

  11. X. Xia, A. Afshar, H. Yang, C.M. Portela, D.M. Kochmann, C.V. Di Leo, J.R. Greer, Nature 572, (2019).

  12. C. Coulais, E. Teomy, K. De Reus, Y. Shokef, M. Van Hecke, Nature 535, 529 (2016).

    Google Scholar 

  13. K. Bertoldi, V. Vitelli, J. Christensen, M. van Hecke, Nat. Rev. Mater. 2, 17066 (2017).

    Google Scholar 

  14. J.A. Jackson, M.C. Messner, N.A. Dudukovic, W.L. Smith, L. Bekker, B. Moran, A.M. Golobic, A.J. Pascall, E.B. Duoss, K.J. Loh, C.M. Spadaccini, Sci. Adv. 4, eaau6419 (2018).

    Google Scholar 

  15. C. Hull, “ Apparatus for Production of Three-Dimensional Objects by Stereolithography,” US Patent 4,575,330 (1986).

  16. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter, Science 334, 962 (2011).

    Google Scholar 

  17. X. Zheng, J. DeOtte, M. Alonso, G. Farquar, T. Weisgraber, S. Gemberling, H. Lee, N. Fang, C.M. Spadaccini, Rev. Sci. Instrum. 83, 125001 (2012).

    Google Scholar 

  18. X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E. Duoss, J. Kuntz, M.M. Biener, Q. Ge, J. Jackson, S.O. Kucheyev, N.X. Fang, C.M. Spadaccini, Science 344, 1373 (2014).

    Google Scholar 

  19. S. Maruo, O. Nakamura, S. Kawata, Opt. Lett. 22, 132 (1997).

    Google Scholar 

  20. M. Malinauskas, A. Žukauskas, G. Bi cˇ kauskait e˙, R. Gadonas, S. Juodkazis, Opt. Express 18, 10209 (2010).

    Google Scholar 

  21. M. Shusteff, A.E.M. Browar, B.E. Kelly, J. Henriksson, T.H. Weisgraber, R.M. Panas, N.X. Fang, C.M. Spadaccini, Sci. Adv. 3, eaao5496 (2017).

    Google Scholar 

  22. B.E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C.M. Spadaccini, H.K. Taylor, Science 363, 1075 (2019).

    Google Scholar 

  23. R.M. Hensleigh, H. Cui, J.S. Oakdale, J.C. Ye, P.G. Campbell, E.B. Duoss, C.M. Spadaccini, X. Zheng, M.A. Worsley, Mater. Horiz. 5, 1035 (2018).

    Google Scholar 

  24. Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Science 351, 58 (2016).

    Google Scholar 

  25. A. Vyatskikh, S. Delalande, A. Kudo, X. Zhang, C.M. Portela, J.R. Greer, Nat. Commun. 9, 593 (2018).

    Google Scholar 

  26. J.A. Lewis, J. Am. Ceram. Soc. 83, 2341 (2000).

    Google Scholar 

  27. J.A. Lewis, Adv. Funct. Mater. 16, 2193 (2006).

    Google Scholar 

  28. B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S.-I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Science 323, 1590 (2009).

    Google Scholar 

  29. E.B. Duoss, M. Twardowski, J.A. Lewis, Adv. Mater. 19, 3485 (2007).

    Google Scholar 

  30. C. Zhu, Z. Qi, V.A. Beck, M. Luneau, J. Lattimer, W. Chen, M.A. Worsley, J. Ye, E.B. Duoss, C.M. Spadaccini, C.M. Friend, J. Biener, Sci. Adv. 4, eaas9459 (2018).

    Google Scholar 

  31. C. Zhu, T.Y. Han, E.B. Duoss, A.M. Golobic, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Nat. Commun. 6, 6962 (2015).

    Google Scholar 

  32. T.J. Ober, D. Foresti, J.A. Lewis, Proc. Natl. Acad. Sci. U.S.A. 112, 12293 (2015).

    Google Scholar 

  33. D.T. Nguyen, C. Meyers, T.D. Yee, N.A. Dudukovic, J.F. Destino, C. Zhu, E.B. Duoss, T.F. Baumann, T. Suratwala, J.E. Smay, R. Dylla-Spears, Adv. Mater. 29, 1701181 (2017).

    Google Scholar 

  34. J.M. Ortega, M. Golobic, J.D. Sain, J.M. Lenhardt, A.S. Wu, S.E. Fisher, L.X. Perez, A.W. Jaycox, J.E. Smay, E.B. Duoss, T.S. Wilson, Adv. Mater. Technol. 4, 1800717 (2019).

    Google Scholar 

  35. A.M. Golobic, M.D. Durban, S.E. Fisher, M.D. Grapes, J.M. Ortega, C.M. Spadaccini, E.B. Duoss, A.E. Gash, K.T. Sullivan, Adv. Eng. Mater. 21, 1900147 (2019).

    Google Scholar 

  36. C.J. Hansen, R. Saksena, D.B. Kolesky, J.J. Vericella, S.J. Kranz, G.P. Muldowney, K.T. Christensen, J.A. Lewis, Adv. Mater. 25, 96 (2013).

    Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52–07NA27344. LLNL-JRNL-787998.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. Spadaccini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spadaccini, C.M. Additive manufacturing and processing of architected materials. MRS Bulletin 44, 782–788 (2019). https://doi.org/10.1557/mrs.2019.234

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.234

Navigation