Skip to main content

Advertisement

Log in

An Overview on Additive Manufacturing of Polymers

  • Additive Manufacturing of Composites and Complex Materials
  • Published:
JOM Aims and scope Submit manuscript

Abstract

We present an overview on additive manufacturing (AM), also called three-dimensional printing, with a focus on polymers. First, we introduce the AM concept. Next, we outline several AM processes, including their advantages and limitations, and list common polymers that are used in commercial printers. Then, we state various AM applications and present two examples. We conclude with a global view of the AM field, its challenges, and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. ISO/ASTM Standard 52900 Standard terminology for additive manufacturing—General principles—Part 1: terminology, West Conshohocken, PA2015.

  2. D.L. Bourell, Annu. Rev. Mater. Res. 46, 1 (2016).

    Article  Google Scholar 

  3. D.L. Bourell, J.P. Kruth, M.-C. Leu, G.N. Levy, D. Rosen, and A.M. Beese et al., CIRP Ann. Manuf. Technol. 66, 657 (2017).

    Google Scholar 

  4. Wohlers Report, Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report (CO: Fort Collins, 2017), p. 2017.

    Google Scholar 

  5. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, Chem. Rev. 117, 10212 (2017).

    Article  Google Scholar 

  6. S. Yuan, F. Shen, J. Bai, C.K. Chua, J. Wei, and K. Zhou, Mater. Des. 120, 317 (2017).

    Article  Google Scholar 

  7. J. Bai, B. Zhang, J. Song, G. Bi, P. Wang, and J. Wei, Polym. Test. 52, 89 (2016).

    Article  Google Scholar 

  8. G. Salmoria, V. Lauth, M. Cardenuto, and R. Magnago, Opt. Laser Technol. 98, 92 (2018).

    Article  Google Scholar 

  9. S. Kumar, Compr. Mater. Process. 10, 93 (2014).

    Article  Google Scholar 

  10. M. Schmid and K. Wegener, Procedia Eng. 149, 457 (2016).

    Article  Google Scholar 

  11. M. Sugavaneswaran and G. Arumaikkannu, Mater. Des. 54, 779 (2014).

    Article  Google Scholar 

  12. R. Vdovin, T. Tomilina, V. Smelov, and M. Laktionova, Procedia Eng. 176, 595 (2017).

    Article  Google Scholar 

  13. D. Ibrahim, T.L. Broilo, C. Heitz, M.G. de Oliveira, H.W. de Oliveira, and S.M.W. Nobre et al., J. Cranio-Maxillofac. Surg. 37, 167 (2009).

    Article  Google Scholar 

  14. W.S. Tan, S.R. Suwarno, J. An, C.K. Chua, A.G. Fane, and T.H. Chong, J. Membrane Sci. 537, 283 (2017).

    Article  Google Scholar 

  15. M. Sugavaneswaran and G. Arumaikkannu, Mater. Des. 66, 29 (2015).

    Article  Google Scholar 

  16. Y. Li, B.S. Linke, H. Voet, B. Falk, R. Schmitt, and M. Lam, CIRP J. Manuf. Sci. Technol. 16, 1 (2017).

    Article  Google Scholar 

  17. Y. Pan and Y. Chen, Addit. Manuf. 12, 321 (2016).

    Article  Google Scholar 

  18. Y.Y.C. Choong, S. Maleksaeedi, H. Eng, J. Wei, and P.-C. Su, Mater. Des. 126, 219 (2017).

    Article  Google Scholar 

  19. J.-W. Choi, H.-C. Kim, and R. Wicker, J. Mater. Process. Technol. 211, 318 (2011).

    Article  Google Scholar 

  20. X. Wu, Q. Lian, D. Li, and Z. Jin, J. Mater. Process. Technol. 243, 184 (2017).

    Article  Google Scholar 

  21. H. Kim, J.W. Choi, and R. Wicker, Rapid Prototyp. J. 16, 232 (2010).

    Article  Google Scholar 

  22. T. Liu, S. Guessasma, J. Zhu, W. Zhang, H. Nouri, and S. Belhabib, J. Mater. Process. Technol. 251, 37 (2018).

    Article  Google Scholar 

  23. V.B. Nidagundi, R. Keshavamurthy, and C. Prakash, Mater. Today: Proc. 2, 1691 (2015).

    Article  Google Scholar 

  24. J. Wang, H. Xie, Z. Weng, T. Senthil, and L. Wu, Mater. Des. 105, 152 (2016).

    Article  Google Scholar 

  25. A. Qattawi, B. Alrawi, and A. Guzman, Procedia Manuf. 10, 791 (2017).

    Article  Google Scholar 

  26. F. Maschio, M. Pandya, and R. Olszewski, Med. Sci. Monitor: Int. Med. J. Exp Clin. Res. 22, 943 (2016).

    Article  Google Scholar 

  27. G. Shah and A. Shah, IJSRSET 2, 1289 (2016).

    Google Scholar 

  28. J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, and F. Fraternali, Compos. Part B: Eng. 117, 138 (2017).

    Article  Google Scholar 

  29. A. Lalehpour and A. Barari, IFAC PapersOnLine 49, 42 (2016).

    Article  Google Scholar 

  30. C. Casavola, A. Cazzato, V. Moramarco, and G. Pappalettera, Polym. Test. 58, 249 (2017).

    Article  Google Scholar 

  31. DSM_Somos®, Product data Somos WaterClear Ultra 10122. https://www.dsm.com/products/somos/en_US/products/offerings-somos-water-clear.html, 2007.

  32. DSM_Somos®, Product data Somos Protogen 18420, https://www.dsm.com/products/somos/en_US/products/offerings-somos-proto-gen.html, 2015.

  33. EOS®, Material data sheet, in http://eos.materialdatacenter.com/eo/en, ed, 2016.

  34. Stratasys®, ABS-M30 production-grade thermoplastic for FDM 3d printers, in http://www.stratasys.com/materials/fdm/abs-m30, ed, 2008.

  35. Stratasys®, PC (polycarbonate) production-grade thermoplastic for Fortus 3D production systems, in http://www.stratasys.com/materials/fdm/pc, ed, 2008.

  36. Stratasys®, PolyJet materials data sheet, in http://usglobalimages.stratasys.com/Main/Files/Material_Spec_Sheets/MSS_PJ_PJMaterialsDataSheet.pdf?v=635785205440671440, ed, 2017.

  37. Objet™, Eden 350/350 V 16 micron layer 3-dimensional printing system, in http://rpl.mechse.illinois.edu/img/printers/pj.pdf, ed, 2007.

  38. S.H. Huang, P. Liu, A. Mokasdar, and L. Hou, Int. J. Adv. Manuf. Technol. 67, 1191 (2013).

    Article  Google Scholar 

  39. J. Bromberger and R. Kelly, Additive manufacturing: a long-term game changer for manufactures, in McKinsey&Company Operations, https://www.mckinsey.com/business-functions/operations/our-insights/additive-manufacturing-a-long-term-game-changer-for-manufacturers, Ed., ed, September 2017.

  40. R. Haridy, Get over it: Madrid gets world’s first 3D printed footbridge, https://newatlas.com/3d-printed-bridge-madrid/47650/, Ed., ed, 2017.

  41. A. Bhargav, V. Sanjairaj, V. Rosa, L.W. Feng, and J. Fuh Yh, J. Biomed. Mater. Res. Part B, Appl. Biomater. (2017).

  42. O. Ivanova, C. Williams, and T. Campbell, Rapid Prototyp. J. 19, 353 (2012).

    Article  Google Scholar 

  43. F.C. Godoi, S. Prakash, and B.R.B. Bhandari, J. Food Sci. 179, 44 (2016).

    Google Scholar 

  44. C. Balletti, M. Ballarin, and F. Guerra, J. Cult. Heritage 26, 172 (2017).

    Article  Google Scholar 

  45. X.-H. Lin and J.-G. Wang, Deconstruction of 3D printing technology for modern clothing design, in Textile Bioeng. Informatics Symp. Proc., 2016, Vol. 1, Y. Li and W. L. Xu, Eds., ed, 2017, pp. 236–239.

  46. X. Li, J. Shang, and Z. Wang, Assembly Autom. 37, 170 (2017).

    Article  Google Scholar 

  47. R.L. Truby and J.A. Lewis, Nature 540, 371 (2016).

    Article  Google Scholar 

  48. D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergstrom, N.A. Sobh, and I. Jasiuk, Mater. Des. 122, 255 (2017).

    Article  Google Scholar 

  49. D.R.H. Jones and M.F. Ashby, Engineering Materials 1: An Introduction to Properties, Applications and Design (Amsterdam: Elsevier Science, 2005).

    Google Scholar 

  50. J. Mueller, K. Shea, and C. Daraio, Mater. Des. 86, 902 (2015).

    Article  Google Scholar 

  51. W. Xiong, Y.S. Zhou, X.N. He, Y. Gao, M. Mahjouri-Samani, and L. Jiang et al., Light: Sci. Appl. 1, e6 (2012).

    Article  Google Scholar 

  52. F. Niesler and M. Hermatschweiler, Laser Tech. J. 11, 16 (2014).

    Article  Google Scholar 

  53. Y.-L. Zhang, Q.-D. Chen, H. Xia, and H.-B. Sun, Nano Today 5, 435 (2010).

    Article  Google Scholar 

  54. S. Maruo and J.T. Fourkas, Laser Photonics Rev. 2, 100 (2008).

    Article  Google Scholar 

  55. M.P. Bendsøe and N. Kikuchi, Comput. Methods Appl. Mech. Eng. 71, 197 (1988).

    Article  Google Scholar 

  56. B.H. Jared, M.A. Aguilo, L.L. Beghini, B.L. Boyce, B.W. Clark, and A. Cook et al., Scr. Mater. 135, 141 (2017).

    Article  Google Scholar 

  57. O. Sigmund and K. Maute, Struct. Multidiscip. Optim. 48, 1031 (2013).

    Article  MathSciNet  Google Scholar 

  58. A. Panesar, I. Ashcroft, D. Brackett, R. Wildman, and R. Hague, Addit. Manuf. 16, 98 (2017).

    Article  Google Scholar 

  59. J. Robbins, S. Owen, B. Clark, and T. Voth, Addit. Manuf. 12, 296 (2016).

    Article  Google Scholar 

  60. K. N. Chau, K. N. Chau, T. Ngo, K. Hackl, and H. Nguyen-Xuan, Comput. Methods Appl. Mech. Eng., (2017).

  61. A. Williams, World’s first 3D-printed office building completed in Dubai, https://newatlas.com/3d-printed-office-dubai-completed/43522/, Ed., ed, 2016.

  62. D. Esra, The world’s first 3D printed car is a blast to drive, http://www.popularmechanics.com/cars/a16726/local-motors-strati-roadster-test-drive/, Ed., ed: Popular Mechanics, 2015.

  63. B.H. In ‘t Veld, L. Overmeyer, M. Schmidt, K. Wegener, A. Malshe, and P. Bartolo, CIRP Ann. Manuf. Technol. 2, 701 (2015).

    Article  Google Scholar 

  64. F. Niesler and M. Hermatschweiler, Laser Technik J. 12, 44 (2015).

    Article  Google Scholar 

  65. M. Thiel and M. Hermatschweiler, Optik Photonik 6, 36 (2011).

    Article  Google Scholar 

  66. RolandBerger, Additive Manufacturing 2013 - A game changer for the manufacturing industry?, in https://www.rolandberger.com/en/Publications/pub_additive_manufacturing_2013.html, ed, 2013.

  67. Additive manufacturing on its way to industrialization—A game changer?, in CECIMO Magazine ed: http://www.cecimo.eu/site/uploads/media/CECIMO_magazine_AM_edition_2015.pdf, 2015.

  68. T. Campbell, C. Williams, O. Ivanova, and B. Garrett, Could 3D printing change the world? Technologies, potential and implications of additive manufacturing, 2011.

  69. C. Weller, R. Kleer, and F.T. Piller, Int. J. Prod. Econ. 164, 43 (2015).

    Article  Google Scholar 

  70. B. Berman, Buziness Horizons 55, 155 (2012).

    Article  Google Scholar 

  71. H. Lipson and M. Kurman, Fabricate: The New World of 3D Printing (Indianapolis: Wiley, 2013).

    Google Scholar 

  72. B.P. Conner, G.P. Manogharan, A.N. Marlof, L.M. Rodomsky, C.M. Rodomsky, and D.C. Jordan et al., Addit. Manuf. 1–4, 64 (2014).

    Article  Google Scholar 

  73. O. Dieger, S. Singamneni, S. Reay, and A. Withell, J. Sustain. Dev. 3, 68 (2010).

    Google Scholar 

  74. W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, and C.B. Williams et al., Comput.-Aided Des. 69, 65 (2015).

    Article  Google Scholar 

  75. V. Niess and S. Wende, IEEE Consum. Electron. Mag. 6, 128 (2017).

    Article  Google Scholar 

  76. J. Yi, R.F. LeBouf, M.G. Duling, T. Nurkiewicz, B.T. Chen, and D. Schwegler-Berry et al., J. Toxicol. Environ. Health Part A 79, 453 (2016).

    Article  Google Scholar 

  77. J.W. Stansbury and M.J. Idacavage, Dental Mater. 32, 54 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by National Science Foundation DMR Program Grant 15-07169 and IIP Program Grant 13-62146.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iwona Jasiuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasiuk, I., Abueidda, D.W., Kozuch, C. et al. An Overview on Additive Manufacturing of Polymers. JOM 70, 275–283 (2018). https://doi.org/10.1007/s11837-017-2730-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-017-2730-y

Navigation