Skip to main content
Log in

DNA nanotechnology for building artificial dynamic systems

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

A fundamental design rule that nature has developed for biological machines is the intimate correlation between motion and function. One class of biological machines is molecular motors in living cells, which directly convert chemical energy into mechanical work. They coexist in every eukaryotic cell, but differ in their types of motion, the filaments they bind to, the cargos they carry, as well as the work they perform. Such natural structures offer inspiration and blueprints for constructing DNA-assembled artificial systems, which mimic their functionality. In this article, we describe two groups of cytoskeletal motors, linear and rotary motors. We discuss how their artificial analogues can be built using DNA nanotechnology. Finally, we summarize ongoing research directions and conclude that DNA origami has a bright future ahead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. P.B. MacCready, “Of Birds, Bees, and Airplanes: Technology Can Take Lessons from Nature on How to Produce Flying Machines,” IEEE Potentials 6, 29 (1987).

    Article  Google Scholar 

  2. S.Y. Lee, T. Yasuda, Y.S. Yang, Q. Zhang, C. Adachi, Angew. Chem. Int. Ed. Engl. vol. 126, 6520 (2014).

    Article  Google Scholar 

  3. N. Dushkina, A. Lakhtakia, Proc. SPIE 7401, R.J. Martin-Palma, A. Lakhtakia, Eds. (SPIE, the International Society for Optics and Photonics, 2011), p. 740106.

  4. M. Piccolino, Nat. Rev. Mol. Cell Biol. 1, 149 (2000).

    Article  CAS  Google Scholar 

  5. G. Bao, S. Suresh, Nat. Mater. 2, 715 (2003).

    Article  CAS  Google Scholar 

  6. J. Howard, A. Hudspeth, R. Vale, Nature 342, 154 (1989).

    Article  CAS  Google Scholar 

  7. S.A. Burgess, M.L. Walker, H. Sakakibara, P.J. Knight, K. Oiwa, Nature 421, 715 (2003).

    Article  CAS  Google Scholar 

  8. J.T. Finer, R.M. Simmons, J.A. Spudich, Nature 368, 113 (1994).

    Article  CAS  Google Scholar 

  9. M. Guix, C.C. Mayorga-Martinez, A. Merkoçi, Chem. Rev. 114, 6285 (2014).

    Article  CAS  Google Scholar 

  10. P.W.K. Rothemund, Nature 440, 297 (2006).

    Article  CAS  Google Scholar 

  11. M. Bathe, P.W.K. Rothemund, MRS Bull. 42 (12), 882 (2017).

    Article  CAS  Google Scholar 

  12. N.C. Seeman, J. Theor. Biol. 99, 237 (1982).

    Article  CAS  Google Scholar 

  13. A. Kuzyk, R. Jungmann, G.P. Acuna, N. Liu, ACS Photonics 5, 1151 (2018).

    Article  CAS  Google Scholar 

  14. C. Zhou, X. Duan, N. Liu, Acc. Chem. Res. 50, 2906 (2017).

    Article  CAS  Google Scholar 

  15. N. Liu, T. Liedl, Chem. Rev. 118, 3032 (2018).

    Article  CAS  Google Scholar 

  16. A. Kuzyk, Y. Yang, X. Duan, S. Stoll, A.O. Govorov, H. Sugiyama, M. Endo, N. Liu, Nat. Commun. 7, 10591 (2016).

    Article  CAS  Google Scholar 

  17. C. Zhou, L. Xin, X. Duan, M.J. Urban, N. Liu, Nano Lett. 18, 7395 (2018).

    Article  CAS  Google Scholar 

  18. A. Kuzyk, M.J. Urban, A. Idili, F. Ricci, N. Liu, Sci. Adv. 3, e1602803 (2017).

    Article  CAS  Google Scholar 

  19. R. Feynman, in Feynman and Computation (CRC Press, Boca Raton, FL, 2018), pp. 63–76.

    Book  Google Scholar 

  20. H. Lodish, A. Berk, J.E. Darnell, C.A. Kaiser, M. Krieger, M.P. Scott, A. Bretscher, H. Ploegh, P. Matsudaira, Molecular Cell Biology (Macmillan, 2008, London, UK).

    Google Scholar 

  21. M.G. Van den Heuvel, C. Dekker, Science 317, 333 (2007).

    Article  CAS  Google Scholar 

  22. N. Hirokawa, Science 279, 519 (1998).

    Article  CAS  Google Scholar 

  23. H.L. Sweeney, A. Houdusse, Annu. Rev. Biophys. 39, 539 (2010).

    Article  CAS  Google Scholar 

  24. W. Junge, O. Pänke, D.A. Cherepanov, K. Gumbiowski, M. Müller, S. Engelbrecht, FEBS Lett. 504,152 (2001).

    Article  CAS  Google Scholar 

  25. M.J. Schnitzer, S.M. Block, Nature 388, 386 (1997).

    Article  CAS  Google Scholar 

  26. H. Gu, J. Chao, S.-J. Xiao, N.C. Seeman, Nature 465, 202 (2010).

    Article  CAS  Google Scholar 

  27. C. Zhou, X.Y. Duan, N. Liu, Nat. Commun. 6, (2015).

  28. A.J. Thubagere, W. Li, R.F. Johnson, Z. Chen, S. Doroudi, Y.L. Lee, G. Izatt, S. Wittman, N. Srinivas, D. Woods, Science 357, 6558 (2017).

    Article  CAS  Google Scholar 

  29. B.J. Mann, P. Wadsworth, Trends Cell Biol. 29, 66 (2019).

    Article  CAS  Google Scholar 

  30. L.C. Kapitein, E.J. Peterman, B.H. Kwok, J.H. Kim, T.M. Kapoor, C.F. Schmidt, Nature 435, 114 (2005).

    Article  CAS  Google Scholar 

  31. M.T. Valentine, P.M. Fordyce, T.C. Krzysiak, S.P. Gilbert, S.M. Block, Nat. Cell Biol. 8, 470 (2006).

    Article  CAS  Google Scholar 

  32. M.J. Urban, S. Both, C. Zhou, A. Kuzyk, K. Lindfors, T. Weiss, N. Liu, Nat. Commun. 9, 1454 (2018).

    Article  CAS  Google Scholar 

  33. G. Wenz, B.-H. Han, A. Müller, Chem. Rev. 106, 782 (2006).

    Article  CAS  Google Scholar 

  34. A.E. Marras, L. Zhou, H.-J. Su, C.E. Castro, Proc. Natl. Acad. Sci. U.S.A. 112, 713 (2015).

    Article  CAS  Google Scholar 

  35. J. List, E. Falgenhauer, E. Kopperger, G. Pardatscher, F.C. Simmel, Nat. Commun. 7, 12414 (2016).

    Article  CAS  Google Scholar 

  36. W. Junge, D.J. Müller, Science 333, 704 (2011).

    Article  CAS  Google Scholar 

  37. M. Diez, B. Zimmermann, M. Börsch, M. König, E. Schweinberger, S. Steigmiller, R. Reuter, S. Felekyan, V. Kudryavtsev, C.A. Seidel, Nat. Struct. Mol. Biol. 11, 135 (2004).

    Article  CAS  Google Scholar 

  38. M.J. Schnitzer, Nature 410, 878 (2001).

    Article  CAS  Google Scholar 

  39. A. Kuzyk, R. Schreiber, H. Zhang, A.O. Govorov, T. Liedl, N. Liu, Nat. Mater. 13, 862 (2014).

    Article  CAS  Google Scholar 

  40. P. Ketterer, E.M. Willner, H. Dietz, Sci. Adv. 2, e1501209 (2016).

    Article  CAS  Google Scholar 

  41. E. Kopperger, J. List, S. Madhira, F. Rothfischer, D.C. Lamb, F.C. Simmel, Science 359, 296 (2018).

    Article  CAS  Google Scholar 

  42. R. Schreiber, J. Do, E.-M. Roller, T. Zhang, V.J. Schüller, P.C. Nickels, J. Feldmann, T. Liedl, Nat. Nanotech. 9, 74 (2014).

    Article  CAS  Google Scholar 

  43. A. Kuzyk, K.T. Laitinen, P. Törmä, Nanotechnology 20, 235305 (2009).

    Article  CAS  Google Scholar 

  44. J. Fu, Y.R. Yang, A. Johnson-Buck, M. Liu, Y. Liu, N.G. Walter, N.W. Woodbury, H. Yan, Nat. Nanotech. 9, 531 (2014).

    Article  CAS  Google Scholar 

  45. R. Jungmann, M.S. Avendaño, J.B. Woehrstein, M. Dai, W.M. Shih, P. Yin, Nat. Methods. 11, 313 (2014).

    Article  CAS  Google Scholar 

  46. S. Li, Q. Jiang, S. Liu, Y. Zhang, Y. Tian, C. Song, J. Wang, Y. Zou, G.J. Anderson, J.-Y. Han, Nat. Biotechnol. 36, 258 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Na Liu.

Additional information

This article is based on The Kavli Foundation Early Career Lectureship in Materials Science presentation given by Na Liu at the 2018 MRS Fall Meeting in Boston, Mass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N. DNA nanotechnology for building artificial dynamic systems. MRS Bulletin 44, 576–581 (2019). https://doi.org/10.1557/mrs.2019.155

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2019.155

Navigation