Skip to main content

Fabrication of Artificial Muscle from Microtubules, Kinesins, and DNA Origami Nanostructures

  • Protocol
  • First Online:
Microtubules

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2430))

Abstract

Fabrication of molecular devices using biomolecules through biomimetic approaches has witnessed a surge in interest in recent years. DNA a versatile programmable material offers an opportunity to realize complicated operations through the designing of various nanostructures such as DNA origami. Here we describe the methods to use DNA origami for the self-assembly of the biomolecular motor system, microtubule (MT)-kinesin. A rodlike DNA origami motif facilitates the self-assembly of MTs into asters. A smooth muscle like molecular contraction system could be realized following the method where DNA mediated self-assembly of MTs permits dynamic contraction in the presence of kinesins through an energy dissipative process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S (2014) Molecular robots with sensors and intelligence. Acc Chem Res 47:1681–1690. https://doi.org/10.1021/ar400318d

    Article  Google Scholar 

  2. Howard J (2001) Mechanics of motor proteins and the cytoskeleton. Sinauer Associates, Sunderland, MA

    Google Scholar 

  3. Keya JJ, Kabir AMR, Kakugo A (2020) Synchronous operation of biomolecular engines. Biophys Rev 12:401–409. https://doi.org/10.1007/s12551-020-00651-2

    Article  Google Scholar 

  4. Van Den Heuvel MGL, Dekker C (2007) Motor proteins at work for nanotechnology. Science 317:333–336. https://doi.org/10.1126/science.1139570

    Article  Google Scholar 

  5. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834. https://doi.org/10.1126/science.1214081

    Article  Google Scholar 

  6. Wollman AJM, Sanchez-Cano C, Carstairs HMJ, Cross RA, Turberfield AJ (2014) Transport and self-organization across different length scales powered by motor proteins and programmed by DNA. Nat Nanotechnol 9:44–47. https://doi.org/10.1038/nnano.2013.230

    Article  Google Scholar 

  7. Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SIM (2017) Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci Robot 2:eaal3735. https://doi.org/10.1126/scirobotics.aal3735

    Article  Google Scholar 

  8. Kopperger E, List J, Madhira S, Rothfischer F, Lamb DC, Simmel FC (2018) A self-assembled nanoscale robotic arm controlled by electric fields. Science 359:296–301

    Article  Google Scholar 

  9. Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han J-Y (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258–264

    Article  Google Scholar 

  10. Li H, Liu J, Gu H (2019) Targeting nucleolin to obstruct vasculature feeding with an intelligent DNA nanorobot. J Cell Mol Med 23:2248–2250

    Article  Google Scholar 

  11. Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, Hess H, Kuzuya A, Kakugo A (2018) DNA-assisted swarm control in a biomolecular motor system. Nat Commun 9:453. https://doi.org/10.1038/s41467-017-02778-5

    Article  Google Scholar 

  12. Keya JJ, Kabir AMR, Inoue D, Sada K, Hess H, Kuzuya A, Kakugo A (2018) Control of swarming of molecular robots. Sci Rep 8:11756. https://doi.org/10.1038/s41598-018-30187-1

    Article  Google Scholar 

  13. Şahin E (2004) Swarm robotics: From sources of inspiration to domains of application. International workshop on swarm robotics. Springer, Berlin, Heidelberg, pp 10–20

    Google Scholar 

  14. Rubenstein M, Cornejo A, Nagpal R (2014) Programmable self-assembly in a thousand-robot swarm. Science 345:795–799. https://doi.org/10.1126/science.1254295

    Article  Google Scholar 

  15. Qian L, Winfree E (2011) Scaling up digital circuit computation with DNA strand displacement cascades. Science 332:1196–1201

    Article  Google Scholar 

  16. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302. https://doi.org/10.1038/nature04586

    Article  Google Scholar 

  17. Derr ND, Goodman BS, Jungmann R, Leschziner AE, Shih WM, Reck-Peterson SL (2012) Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold. Science 338:662–665

    Article  Google Scholar 

  18. Iwaki M, Wickham SF, Ikezaki K, Yanagida T, Shih WM (2016) A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads. Nat Commun 7:13715. https://doi.org/10.1038/ncomms13715

    Article  Google Scholar 

  19. Matsuda K, Kabir AMR, Akamatsu N, Saito A, Ishikawa S, Matsuyama T, Ditzer O, Islam MS, Ohya Y, Sada K, Konagaya A, Kuzuya A, Kakugo A (2019) Artificial smooth muscle model composed of hierarchically ordered microtubule asters mediated by DNA origami nanostructures. Nano Lett 19:3933–3938. https://doi.org/10.1021/acs.nanolett.9b01201

    Article  Google Scholar 

  20. Castoldi M, Popov AV (2003) Purification of brain tubulin through two cycles of polymerization–depolymerization in a high-molarity buffer. Protein Expr Purif 32:83–88

    Article  Google Scholar 

  21. Fujimoto K, Kitamura M, Yokokawa M, Kanno I, Kotera H, Yokokawa R (2013) Colocalization of quantum dots by reactive molecules carried by motor proteins on polarized microtubule arrays. ACS Nano 7:447–455

    Article  Google Scholar 

  22. Peloquin J, Komarova Y, Borisy G (2005) Conjugation of fluorophores to tubulin. Nat Methods 2:299–303. https://doi.org/10.1038/nmeth0405-299

    Article  Google Scholar 

  23. Douglas SM, Chou JJ, Shih WM (2007) DNA-nanotube-induced alignment of membrane proteins for NMR structure determination. Proc Natl Acad Sci USA 104:6644–6648

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Grant-in-Aid for Scientific Research on Innovative Areas “Molecular Engine” (18H05423) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kakugo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Keya, J.J., Akter, M., Kabir, A., Ishii, S., Kakugo, A. (2022). Fabrication of Artificial Muscle from Microtubules, Kinesins, and DNA Origami Nanostructures. In: Inaba, H. (eds) Microtubules. Methods in Molecular Biology, vol 2430. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-1983-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-1983-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-1982-7

  • Online ISBN: 978-1-0716-1983-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics