Skip to main content

Advertisement

Log in

Semiconductor materials for x-ray detectors

  • Next-Generation Materials for Synchrotron Radiation
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Semiconductor x-ray detectors are widely used in experiments at synchrotron facilities. The performance of these detectors depends heavily on the semiconductor material properties. Improvements in crystal growth and device processing are key to developing “high-Z” (high atomic number) semiconductors for hard x-ray detection. Germanium is the most mature high-Z semiconductor and is widely used in x-ray detectors, but it has the drawback of needing to be cooled during operation, often to cryogenic temperatures. Compound semiconductors with wide bandgaps can be used at room temperature, but crystal defects can degrade their performance. Gallium arsenide currently shows poorer energy resolution, but its comparative robustness and stability over time make it a strong option for imaging detectors. Cadmium telluride and cadmium zinc telluride both provide higher detection efficiencies at extreme x-ray energies as well as good energy resolution; the main challenge with these materials is maintaining consistent behavior under a high x-ray flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. G. Lutz, Semiconductor Radiation Detectors—Device Physics (Springer-Verlag Berlin Heidelberg, Heidelberg, Germany, 2007).

    Google Scholar 

  2. P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications (Wiley, 2011), doi:10.1002/9781119970958.

  3. B. Schmitt, C. Brönnimann, E.F. Eikenberry, G. Hülsen, H. Toyokawa, R. Horisberger, F. Gozzo, B. Patterson, C. Schulze-Briese, T. Tomizaki., Nucl. Instrum. Methods Phys. Res. A 518, 436 (2004).

    Google Scholar 

  4. C. Ponchut, J. Rigal, J. Clement, E. Papillon, A. Homs, S. Petitdemange, J. Instrum. 6, C01069 (2011).

    Google Scholar 

  5. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, NIST Standard Reference Database 8 (XGAM), https://www.nist.gov/pml/xcom-photon-cross-sections-database.

  6. M.D. McCluskey, E.E. Haller, Dopants and Defects in Semiconductors (CRC Press, Boca Raton, FL, 2012).

  7. B. Depuydt, A. Theuwis, I. Romandic, Mater. Sci. Semicond. Process. 9, 437 (2006).

    Google Scholar 

  8. L.S. Darken, C.E. Cox, Semiconductors for Room Temperature Nuclear Detector Applications (Academic Press, San Diego, 1995).

  9. G.F. Knoll, Radiation Detection and Measurement, 4th ed. (Wiley, New York, 2010).

  10. D. Gutknecht, Nucl. Instrum. Methods Phys. Res. A 288, 13 (1990).

    Google Scholar 

  11. H. Elleaume, A.M. Charvet, P. Berkvens, G. Berruyer, T. Brochard, Y. Dabin, M.C. Dominguez, A. Draperi, S. Fiedler, G. Goujon, G. Le Duc, Nucl. Instrum. Methods Phys. Res. A 428, 513 (1999).

    Google Scholar 

  12. G. Duchêne, F.A. Beck, P.J. Twin, G. De France, D. Curien, L. Han, C.W. Beausang, M.A. Bentley, P.J. Nolan, J. Simpson, Nucl. Instrum. Methods Phys. Res. A 432, 90 (1999).

    Google Scholar 

  13. H. Oyanagi, C. Fonne, D. Gutknecht, P. Dressler, R. Henck, M.-O. Lampert, S. Ogawa, K. Kasai, S.B. Mohamed, Nucl. Instrum. Methods Phys. Res. A 513, 340 (2003).

    Google Scholar 

  14. D. Pennicard, B. Struth, H. Hirsemann, M. Sarajlic, S. Smoljanin, M. Zuvic, M.O. Lampert, T. Fritzsch, M. Rothermund, H. Graafsma, J. Instrum. 9, P12003 (2014).

    Google Scholar 

  15. M. Sarajlic, D. Pennicard, S. Smoljanin, H. Hirsemann, B. Struth, T. Fritzsch, M. Rothermund, M. Zuvic, M.O. Lampert, M. Askar, H. Graafsma, J. Instrum. 12, C01068 (2017).

    Google Scholar 

  16. A. Tyazhev, D. Budnitsky, D. Mokeev, V. Novikov, A. Zarubin, O. Tolbanov, G. Shelkov, E. Hamann, A. Fauler, M. Fiederle, S. Procz, “GaAs Pixel Detectors,” Mater. Res. Soc. Symp. Proc. 1576, M. Fiederle, Ed. (Materials Research Society, Warrendale, PA, 2013), p. 1144.

  17. A.V. Tyazhev, D.L. Budnitsky, O.B. Koretskay, V.A. Novikov, L.S. Okaevich, A.I. Potapov, O.P. Tolbanov, A.P. Vorobiev, Nucl. Instrum. Methods Phys. Res. A 509, 34 (2003).

    Google Scholar 

  18. M.C. Veale, S.J. Bell, D.D. Duarte, M.J. French, A. Schneider, P. Seller, M.D. Wilson, A.D. Lozinskaya, V.A. Novikov, O.P. Tolbanov, A. Tyazhev, Nucl. Instrum. Methods Phys. Res. A 752, 6 (2014).

    Google Scholar 

  19. E. Hamann, “Characterization of high resistivity GaAs as Sensor Material for Photon Counting Semiconductor Pixel Detectors,” PhD thesis, University of Freiburg, Germany ( 2013).

  20. E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, T. Baumbach, M. Fiederle, IEEE Trans. Med. Imaging 34, 707 (2015).

    Google Scholar 

  21. D. Pennicard, S. Smoljanin, B. Struth, H. Hirsemann, A. Fauler, M. Fiederle, O. Tolbanov, A. Zarubin, A. Tyazhev, G. Shelkov, H. Graafsma, J. Instrum. 9, C12026 (2014).

    Google Scholar 

  22. M.C. Veale, S.J. Bell, D.D. Duarte, M.J. French, M. Hart, A. Schneider, P. Seller, M.D. Wilson, V. Kachkanov, A.D. Lozinskaya, V.A. Novikov, J. Instrum. 9, C12047 (2014).

    Google Scholar 

  23. E. Hamann, T. Koenig, M. Zuber, A. Cecilia, A. Tyazhev, O. Tolbanov, S. Procz, A. Fauler, M. Fiederle, T. Baumbach, J. Instrum. 10, C01047 (2015).

    Google Scholar 

  24. H. Shiraki, M. Funaki, Y. Ando, A. Tachibana, S. Kominami, R. Ohno, IEEE Trans. Nucl. Sci. 56, 1717 (2009).

    Google Scholar 

  25. T. Takahashi, S. Watanabe, IEEE Trans. Nucl. Sci. 49, 950 (2001).

    Google Scholar 

  26. M. Funaki, Y. Ando, R. Jinnai, A. Tachibana, R. Ohno, Proc. Int. Workshop Semicond. PET(2007), www.acrorad.co.jp/_skin/pdf/Development_of_CdTe_detectors.pdf .

  27. M.D. Wilson, L. Dummott, D.D. Duarte, F.H. Green, S. Pani, A. Schneider J.W. Scuffham, P. Seller, M.C. Veale, J. Instrum. 10, P10011 (2015).

    Google Scholar 

  28. M.D. Wilson, T. Connolley, I.P. Dolbnya, P.S. Grant, E. Liotti, A. Lui, A. Malandain, K. Sawhney, P. Seller, M.C. Veale, AIP Conf. Proc. 1741, 050008 (2016).

    Google Scholar 

  29. P.C. Diemoz, A. Bravin, A. Sztrókay-Gaul, M. Ruat, S. Grandl, D. Mayr S. Auweter, A. Mittone, E. Brun, C. Ponchut, M.F. Reiser, Phys. Med. Biol. 61, 8750 (2016).

    Google Scholar 

  30. M. Ruat, C. Ponchut, J. Instrum. 9, C04030 (2014).

    Google Scholar 

  31. K. Iniewski, M. Rissi, V Radicci, P. Zambon, M. Schneebeli, J. Iwanczyk, P. Butler, C. Bosch, “CZT Growth, Characterization, Fabrication, and Electronics for Operation at 1–100 Mcps/mm 2 Count Rates,” paper presented at the workshop on Medical Applications of Spectroscopic X-Ray Detectors, CERN, 2015, http://indico.cern.ch/event/356158/contributions/843372/attachments/707877/971811/015_niewski.pdf.

  32. S. Awadalla, Ed., Solid-State Radiation Detectors: Technology and Applications, Series on Devices, Circuits, and Systems ( CRC Press, Boca Raton, FL, 2015).

  33. G. Prekas, “The Effect of Crystal Quality on the Behavior of Semi-Insulating CdZnTe Detectors for X-Ray Spectroscopic and High Flux Applications,” presented at IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop, Seattle, WA, October 2014 .

  34. J.S. Iwanczyk, Ed., Radiation Detectors for Medical Imaging, Series on Devices, Circuits, and Systems ( CRC Press, Boca Raton, FL, 2016 ).

  35. K. Iniewski, “CZT Sensor - Readout ASIC Interfaces for High-Flux Photon Counting Systems,” presented at the IEEE Nuclear Science Symposium, Medical maging Conference and Room-Temperature Semiconductor Detector Workshop, Strasbourg, France, 2016, http://2016.nss-mic.org/program.php.

  36. J. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Bäumer C. Herrmann, R. Steadman, G. Zeitler, A. Livne, Phys. Med. Biol. 53, 4031 (2008).

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank W. Inui for advice on CdTe detectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Pennicard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pennicard, D., Pirard, B., Tolbanov, O. et al. Semiconductor materials for x-ray detectors. MRS Bulletin 42, 445–450 (2017). https://doi.org/10.1557/mrs.2017.95

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2017.95

Navigation