Skip to main content
Log in

Synthesis and applications of conducting polymer nanofibers

  • Technical Features
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Conducting polymers are difficult to process, since unlike conventional polymers, they generally do not dissolve in common solvents or melt. By synthesizing nanostructured forms of the conjugated polymer polyaniline, simple methods for making conducting polymer inks become possible. By using either interfacial polymerization or a rapid-mixing technique, nanostructured polyaniline has been synthesized in a readily scalable process. Polyaniline nanofibers make excellent sensors for acids and bases. When decorated with metal nanoparticles, they can be used for molecular memory devices and catalysis. Using a flash from a camera, polyaniline nanofibers can be melted and patterned to make sensors, actuators, and asymmetric membranes. Single crystals of tetraaniline can be grown that exhibit conductivities approaching that of the bulk polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. R.B. Kaner, A.G. MacDiarmid, Sci. Am. 258, 106 (1988).

    Google Scholar 

  2. http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2000.

  3. C. Wu, T. Bein, Science 264, 1757 (1994).

    Google Scholar 

  4. C.R. Martin, Acc. Chem. Res. 28, 61 (1995).

    Google Scholar 

  5. H. Qiu, M. Wan, Macromolecules 34, 675 (2001).

    Google Scholar 

  6. I.D. Norris, M.M. Shaker, F.K. Ko, A.G. MacDiarmid, Synth. Met. 114, 109 (2000).

    Google Scholar 

  7. J. Huang, S. Virji, B.H. Weiller, R.B. Kaner, J. Am. Chem. Soc. 125, 314 (2003).

    Google Scholar 

  8. J. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004).

    Google Scholar 

  9. J. Huang, R.B. Kaner, Chem. Commun. 4, 367 (2006).

    Google Scholar 

  10. J. Huang, R.B. Kaner, Angew. Chem. Int. Ed. 43, 5817 (2004).

    Google Scholar 

  11. B.T. McVerry, J.A.T. Temple, X. Huang, K.L. Marsh, E.M.V. Hoek, R.B. Kaner, Chem. Mater. 25, 3597 (2013).

    Google Scholar 

  12. G.R. Guillen, T.P. Farrell, R.B. Kaner, E.M.V. Hoek, J. Mater. Chem. 20, 4621 (2010).

    Google Scholar 

  13. D. Li, R.B. Kaner, Chem. Commun. 26, 3286 (2005).

    Google Scholar 

  14. D. Li, R.B. Kaner, J. Mater. Chem. 17, 2279 (2007).

    Google Scholar 

  15. J.M. D’Arcy, H.D. Tran, V.C. Tung, A.K. Tucker-Schwartz, Y. Yang, R.B. Kaner, Proc. Natl. Acad. Sci. U.S.A. 107, 19673 (2010).

    Google Scholar 

  16. J.M. D’Arcy, H.D. Tran, A.Z. Stieg, J. Gimzewski, R.B. Kaner, Nanoscale 4, 3075 (2012).

    Google Scholar 

  17. J. Huang, S. Virji, B. Weiller, R.B. Kaner, Chem. Eur. J. 10, 1314 (2004).

    Google Scholar 

  18. S. Virji, J. Huang, R.B. Kaner, B.H. Weiller, Nano Lett. 4, 591 (2004).

    Google Scholar 

  19. S. Virji, B.H. Weiller, J. Huang, R. Blair, H. Shepherd, T. Faltens, P.C. Haussmann, R.B. Kaner, S.H. Tolbert, J. Chem. Educ. 85, 1102 (2008).

    Google Scholar 

  20. S. Virji, J.D. Fowler, C.O. Baker, J. Huang, R.B. Kaner, B.H. Weiller, Small 1, 624 (2005).

    Google Scholar 

  21. S. Virji, R. Kojima, J.D. Fowler, J.G. Villanueva, R.B. Kaner, B.H. Weiller, Nano Res. 2, 135 (2009).

    Google Scholar 

  22. S. Virji, R. Kojima, J. Fowler, R.B. Kaner, B.H. Weiller, Chem. Mater. 21, 3056 (2009).

    Google Scholar 

  23. S. Virji, R.B. Kaner, B.H. Weiller, Chem. Mater. 17, 1256 (2005).

    Google Scholar 

  24. R.J. Tseng, J. Huang, J. Ouyang, R.B. Kaner, Y. Yang, Nano Lett. 5, 1077 (2005).

    Google Scholar 

  25. R.J. Tseng, C.O. Baker, B. Shedd, J. Huang, J. Ouyang, R.B. Kaner, Y. Yang, Appl. Phys. Lett. 90, 053101 (2007).

    Google Scholar 

  26. B.J. Gallon, R.W. Kojima, R.B. Kaner, P.L. Diaconescu, Angew. Chem. Int. Ed. 46, 7251 (2007).

    Google Scholar 

  27. J. Huang, R.B. Kaner, Nat. Mater. 3, 783 (2004).

    Google Scholar 

  28. V. Strong, Y. Wang, A. Patatanyan, P.G. Whitten, G.M. Spinks, G.G. Wallace, R.B. Kaner, Nano Lett. 11, 3128 (2011).

    Google Scholar 

  29. C.O. Baker, B. Shedd, P.C. Innis, P.G. Whitten, G.M. Spinks, G.G. Wallace, R.B. Kaner, Adv. Mater. 20, 155 (2008).

    Google Scholar 

  30. D. Li, J. Huang, R.B. Kaner, Acc. Chem. Res. 42, 135 (2009).

    Google Scholar 

  31. H.D. Tran, R.B. Kaner, Chem. Commun. 37, 3915 (2006).

    Google Scholar 

  32. H.D. Tran, I. Norris, J.M. D’Arcy, H. Tsang, Y. Wang, B.R. Mattes, R.B. Kaner, Macromolecules 41, 7405 (2008).

    Google Scholar 

  33. Y. Wang, H.D. Tran, R.B. Kaner, J. Phys. Chem. C 113, 10346 (2009).

    Google Scholar 

  34. H.D. Tran, W.G. Hong, J.M. D’Arcy, R.W. Kojima, B.H. Weiller, K. Shin, R.B. Kaner, Macromol. Rapid Commun. 28, 2293 (2007).

    Google Scholar 

  35. Y. Wang, H.D. Tran, L. Liao, X. Duan, R.B. Kaner, J. Am. Chem. Soc. 132, 10365 (2010).

    Google Scholar 

  36. Y. Wang, J. Liu, H.D. Tran, M. Mecklenburg, X.N. Guan, A.Z. Stieg, B.C. Regan, D.C. Martin, R.B. Kaner, J. Am. Chem. Soc. 134, 9251 (2012).

    Google Scholar 

  37. Q.H. Wang, M.C. Hersam, Nat. Chem. 1, 206 (2009).

    Google Scholar 

  38. Y. Wang, J.A. Torres, A.Z. Stieg, S. Jiang, M.T. Yeung, Y. Rubin, S. Chaudhuri, X. Duan, R.B. Kaner, ACS Nano 9, 9486 (2015).

    Google Scholar 

  39. J.M. D’Arcy, M.F. El-Kady, P.P. Khine, L. Zhang, S.H. Lee, N.R. Davis, D.S. Liu, M.T. Yeung, S.Y. Kim, C.L. Turner, A.T. Lech, P.T. Hammond, R.B. Kaner, ACS Nano 8, 1500 (2014).

    Google Scholar 

Download references

Acknowledgements

The author thanks J. Huang, S. Virji, R. Blair, D. Li, H. Tran, K. Shin, C. Baker, B. Shedd, V. Strong, R. Kojima, J. D’Arcy, Y.(J.) Wang, B. McVerry, Y. Liao, T. Farrell, K. Marsh, X.(W.) Huang, B. Weiller, G. Wallace, G. Spinks, D. Martin, Y. Yang, P. Diaconescu, E. Hoek, and S. Tolbert for their contributions. He also thanks their sponsors, including the National Science Foundation, the Microelectronics Advanced Research Corp., Homeland Security Advanced Research Projects Agency, Abraxis Bioscience, Boeing, and Water Planet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard B. Kaner.

Additional information

The following article is based on the MRS Medal presentation given by Richard B. Kaner at the 2015 MRS Fall Meeting in Boston. He is cited “for the discovery of efficient methods to synthesize water-dispersible conducting polymer nanofibers and their applications in sensors, actuators, molecular memory devices, catalysis, and the novel process of flash welding.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaner, R.B. Synthesis and applications of conducting polymer nanofibers. MRS Bulletin 41, 785–790 (2016). https://doi.org/10.1557/mrs.2016.213

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.213

Navigation