Skip to main content

Advertisement

Log in

Scaling sorbent materials for real oil-sorbing applications and environmental disasters

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2020

This article has been updated

Abstract

There are few feasible options for sorbents, which can be quickly manufactured and deployed in the event of a major oil spill and so every oil spill is an ecological disaster. This paper aims to provide an understanding of what a realistic, full-scale crude oil spill solution would look like based on the performance of the best sorbents currently available, their costs, and their advantages.

Adsorbent materials or “sorbents” described here have been a recent target for research toward applications in environmental cleanup, remediation, and hazardous material containment. These materials contain many compositions, syntheses, and practical manufacturing parameters that make most of them practically and logistically unfit to tackle quantities much larger than a single barrel of oil. Different properties of crude oil and nonpolar materials, such as their viscosity, density, and weathering, can also make these materials seem attractive on a lab scale but underperform in field testing and in practical applications. This review addresses the challenges, advantages, and disadvantages of different technical applications of the superior sorbent materials and material types in the literature. In addition, we discuss the different costs and manufacturing challenges of sorbent materials in real oil spills and what a feasible containment sorbent material might look like.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Table 1
Table 2
Figure 3
Figure 4
Figure 5
Figure 6
Table 3
Table 4
Table 5

Similar content being viewed by others

Change history

References

  1. Guard U.C.: Coordinator Report Deepwater Horizon (National Oceanic and Atmospheric Administration, Silver Spring, MD, 2011).

    Google Scholar 

  2. Ivshina I.B., Kuyukina M.S., Krivoruchko A.V., Elkin A.A., Makarov S.O., Cunningham C.J., Peshkur T.A., and Atlas M.: Environmental science processes & impacts oil spill problems and sustainable response strategies through new technologies 33(0), 1201–1219 (2015).

    Google Scholar 

  3. Schrope M.: Oil spill: Deep wounds. Nature 472, 152–154 (2011).

    CAS  Google Scholar 

  4. Wilson M., Graham L., Hale C., Maung-Douglass E., Sempier S., Skelton T., and Swann L.: Oil spill science: Deepwater horizon-where did the oil go? 1–8 (2017). Available at: https://protect-eu.mimecast.com/s/pIaTCNOBOsNX6E1TRFv8t?domain=masgc.org.

    Google Scholar 

  5. Graham L.J., Hale C., Maung-douglass E., and Sempier S.: Chemical dispersants and their role in oil spill response (2016). Available at: https://protect-eu.mimecast.com/s/4-PVCOgDgsA4O0oUPQiLn?domain=masgc.org.

    Google Scholar 

  6. Walther H.R.: Clean up Techniques Used for Coastal Oil Spills: An Analysis of Spills Occurring in Santa Barbara, California, Prince William Sound, Alaska, the Sea of Japan, and the Gulf Coast (University of San Francisco, San Francisco, CA, 2014).

    Google Scholar 

  7. Oil Tanker Spill Statistics 2017, 2018.

  8. Chang S.E., Stone J., Demes K., and Piscitelli M.: Consequences of oil spills: A review and framework for informing planning. Ecol. Soc. 19(2), 26 (2014).

    Google Scholar 

  9. Goodbody-Gringley G., Wetzel D.L., Gillon D., Pulster E., Miller A., and Ritchie K.B.: Toxicity of Deepwater Horizon source oil and the chemical dispersant, Corexit® 9500, to coral larvae. PLoS One 8(1), 1–10 (2013).

    Google Scholar 

  10. Evans D.D., George W., Baum H.R., Walton W.D., and Kevin B.: In situ burning of oil spills. J. Res. Natl. Inst. Stand. Technol. 106(1), 231–278 (2001).

    CAS  Google Scholar 

  11. Korsh J., Shen A., Aliano K., and Davenport T.: Polycyclic aromatic hydrocarbons and breast cancer: A review of the literature. Breast Care 10(5), 316–318 (2015).

    Google Scholar 

  12. Khordagui H.: Environmental impact of the Gulf war: An integrated preliminary assessment. Environ. Manage. 17(4), 557–562 (1993).

    Google Scholar 

  13. Barry E., Mane A.U., Libera J.A., Elam J.W., and Darling S.B.: Advanced oil sorbents using sequential infiltration synthesis. J. Mater. Chem. A 5, 2929–2935 (2017).

    CAS  Google Scholar 

  14. Nelson J.R. and Grubesic T.H.: Oil spill modeling: Risk, spatial vulnerability, and impact assessment. Prog. Phys. Geogr. 42(1), 112–127 (2018).

    Google Scholar 

  15. Ainsworth C.H., Paris C.B., Perlin N., Dornberger L.N., Patterson W.F., III, Chancellor E., Murawski S., Hollander D., Daly K., Romero I.C., Coleman F., and Perryman H.: Impacts of the Deepwater Horizon oil spill evaluated using an end-to-end ecosystem model. PLoS One 13(1), e0190840 (2018).

    Google Scholar 

  16. Bishop R.C., Boyle K.J., Carson R.T., Chapman D., Michael W., Kanninen B., Kopp R.J., Krosnick J.A., List J., Paterson R., Presser S., Smith V.K., Tourangeau R., Welsh M., Wooldridge J.M., Debell M., Donovan C., Konopka M., and Scherer N.: Putting a value on injuries to natural assets: The BP oil spill. Science 356(6335), 253–254 (2017).

    CAS  Google Scholar 

  17. Sabir S.: Approach of cost-effective adsorbents for oil removal from oily water. Crit. Rev. Environ. Sci. Technol. 45(17), 1916–1945 (2015).

    CAS  Google Scholar 

  18. Doshi B., Sillanpää M., and Kalliola S.: A review of bio-based materials for oil spill treatment. Water Res. 135, 262–277 (2018).

    CAS  Google Scholar 

  19. Du F., Huang J., Duan H., Xiong C., and Wang J.: Wetting transparency of supported graphene is regulated by polarities of liquids and substrates. Appl. Surf. Sci. 454(May), 249–255 (2018).

    CAS  Google Scholar 

  20. Chandler D.: Interfaces and the driving force of hydrophobic assembly. Nature 437(7059), 640–647 (2005).

    CAS  Google Scholar 

  21. Dedov A.G., Ivanova E.A., Sandzhieva D.A., Lobakova E.S., Kashcheeva P.B., Kirpichnikov M.P., Ishkov A.G., and Buznik V.M.: New materials and ecology: Biocomposites for aquatic remediation. Theor. Found. Chem. Eng. 51(4), 617–630 (2017).

    CAS  Google Scholar 

  22. Liu S., Xu Q., Latthe S.S., Gurav A.B., and Xing R.: Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation. RSC Adv. 5(84), 68293–68298 (2015).

    CAS  Google Scholar 

  23. Langevin D., Poteau S., Hénaut I., and Argillier J.F.: Crude oil emulsion properties and their application to heavy oil transportation. Oil Gas Sci. Technol. 59(5), 511–521 (2004).

    CAS  Google Scholar 

  24. Liu Y. and Kujawinski E.B.: Chemical composition and potential environmental impacts of water-soluble polar crude oil components inferred from esi FT-ICRMS. PLoS One 10(9), 1–18 (2015).

    Google Scholar 

  25. Meyer R.F., Attanasi E.D., and Freeman P.A.: Heavy Oil and Natural Bitumen Resources in Geological Basins of the World (U.S. Geological Survey, Reston, VA, 2007).

    Google Scholar 

  26. Gibson L.J. and Ashby M.F.: Cellular Solids: Structure and Properties, 2nd ed. (Cambridge University Press, Cambridge, England, 1997).

    Google Scholar 

  27. Pang Y., Wang S., Wu M., Liu W., Wu F., Lee P.C., and Zheng W.: Kinetics study of oil sorption with open-cell polypropylene/polyolefin elastomer blend foams prepared via continuous extrusion foaming. Polym. Adv. Technol. 29(4), 1313–1321 (2018).

    CAS  Google Scholar 

  28. Bay H.: Design, Synthesis and Characterization of Novel Graphene-Based Nanoarchitectures for Sustainability (University of California Riverside, Riverside, CA, 2015).

    Google Scholar 

  29. Bay H.H., Patino D., Mutlu Z., Romero P., Ozkan M., and Ozkan C.S.: Scalable multifunctional ultra-thin graphite sponge: Free-standing, superporous, superhydrophobic, oleophilic architecture with ferromagnetic properties for environmental cleaning. Sci. Rep. 6, 21858 (2016).

    CAS  Google Scholar 

  30. Ethington E.F.: Interfacial contact angle measurements of water, mercury, and 20 organic liquids on quartz, calcite, biotite, and Ca-montmorillonite substrates. United States Geol. Surv. 90–409(July), 1–18 (1990).

    Google Scholar 

  31. Shtein Z. and Shoseyov O.: When bottom-up meets top-down. Proc. Natl. Acad. Sci. U. S. A. 114(3), 428–429 (2017).

    CAS  Google Scholar 

  32. Zhang L., Xu L., Sun Y., and Yang N.: Robust and durable superhydrophobic polyurethane sponge for oil/water separation. Ind. Eng. Chem. Res. 55(43), 11260–11268 (2016).

    CAS  Google Scholar 

  33. Abbasi Z., Shamsaei E., Fang X.Y., Ladewig B., and Wang H.: Simple fabrication of zeolitic imidazolate framework ZIF-8/polymer composite beads by phase inversion method for efficient oil sorption. J. Colloid Interface Sci. 493, 150–161 (2017).

    CAS  Google Scholar 

  34. Suh D.J., Park T.J., Han H.Y., and Lim J.C.: Synthesis of highsurface-area zirconia aerogels with a well-developed mesoporous texture using CO2 supercritical drying. Chem. Mater. 14(4), 1452–1454 (2002).

    CAS  Google Scholar 

  35. Jambeck J.R., Geyer R., Wilcox C., Siegler T.R., Perryman M., Andrady A., Narayan R., and Law K.L.: Plastic waste inputs from land into the ocean. Science 347(6223), 768–771 (2015).

    CAS  Google Scholar 

  36. Koelmans A.A., Gouin T., Thompson R., Wallace N., and Arthur C.: Plastics in the marine environment. Environ. Toxicol. Chem. 33(1), 5–10 (2014).

    CAS  Google Scholar 

  37. Mohan D., Sarswat A., Ok Y.S., and Pittman C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresour. Technol. 160(October), 191–202 (2014).

    CAS  Google Scholar 

  38. Crini G.: Review: A history of cyclodextrins. Chem. Rev. 114(21), 10940–10975 (2014).

    CAS  Google Scholar 

  39. Wang S., Dai G., Yang H., and Luo Z.: Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog. Energy Combust. Sci. 62, 33–86 (2017).

    Google Scholar 

  40. Adebajo M.O., Frost R.L., Kloprogge J.T., Carmody O., and Kokot S.: Porous materials for oil spill cleanup: A review of synthesis. J. Porous Mater. 10, 159–170 (2003).

    CAS  Google Scholar 

  41. Nam C., Li H., Zhang G., and Chung T.C.M.: Petrogel: New hydrocarbon (oil) absorbent based on polyolefin polymers. Macromolecules 49(15), 5427–5437 (2016).

    CAS  Google Scholar 

  42. Guo Z., Gu H., Chen Q., He Z., Xu W., Zhang J., Liu Y., Xiong L., Zheng L., and Feng Y.: Macroporous monoliths with pH-induced switchable wettability for recyclable oil separation and recovery. J. Colloid Interface Sci. 534, 183–194 (2019).

    CAS  Google Scholar 

  43. Zhu Q., Pan Q., and Liu F.: Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J. Phys. Chem. C 115(35), 17464–17470 (2011).

    CAS  Google Scholar 

  44. Wang J. and Wang H.: Ultra-hydrophobic and mesoporous silica aerogel membranes for efficient separation of surfactant-stabilized water-in-oil emulsion separation. Sep. Purif. Technol. 212(November 2018), 597–604 (2019).

    CAS  Google Scholar 

  45. Wang D., McLaughlin E., Pfeffer R., and Lin Y.S.: Adsorption of oils from pure liquid and oil-water emulsion on hydrophobic silica aerogels. Sep. Purif. Technol. 99, 28–35 (2012).

    CAS  Google Scholar 

  46. Lv X., Tian D., Peng Y., Li J., and Jiang G.: Superhydrophobic magnetic reduced graphene oxide-decorated foam for efficient and repeatable oil-water separation. Appl. Surf. Sci. 466(October 2018), 937–945 (2019).

    CAS  Google Scholar 

  47. Wei Q., Oribayo O., Feng X., Rempel G.L., and Pan Q.: Synthesis of polyurethane foams loaded with TiO2 nanoparticles and their modification for enhanced performance in oil spill cleanup. Ind. Eng. Chem. Res. 57(27), 8918–8926 (2018).

    CAS  Google Scholar 

  48. Oribayo O., Feng X., Rempel G.L., and Pan Q.: Synthesis of lignin-based polyurethane/graphene oxide foam and its application as an absorbent for oil spill clean-ups and recovery. Chem. Eng. J. 323, 191–202 (2017).

    CAS  Google Scholar 

  49. Cao S., Dong T., Xu G., and Wang F.: Oil spill cleanup by hydrophobic natural fibers. J. Nat. Fibers 14(5), 727–735 (2017).

    CAS  Google Scholar 

  50. Bidgoli H., Mortazavi Y., and Khodadadi A.A.: A functionalized nano-structured cellulosic sorbent aerogel for oil spill cleanup: Synthesis MRS ENERGY & SUSTAINABILITY // VOLUME 6 // e3 // www.mrs.org/energy-sustainability-journal n 13 and characterization. J. Hazard. Mater. 366(November 2018), 229–239 (2018).

    Google Scholar 

  51. Wang Z., Saleem J., Barford J.P., Mckay G., Wang Z., Saleem J., Barford J.P., and Mckay G.: Preparation and characterization of modified rice husks by biological delignification and acetylation for oil spill cleanup. Environ. Technol., 1–12 (2018). Available at: https://protect-eu.mimecast.com/s/TX-rCMZAZC5WJRGCJOnc6?domain=tandfonline.com.

    Google Scholar 

  52. Zhang X., Wang C., Chai W., Liu X., Xu Y., and Zhou S.: Kapok fiber as a natural source for fabrication of oil absorbent. J. Chem. Technol. Biotechnol. 92(7), 1613–1619 (2017).

    CAS  Google Scholar 

  53. Singh V., Kendall R.J., Hake K., and Ramkumar S.: Crude oil sorption by raw cotton. Ind. Eng. Chem. Res. 52, 6277–6281 (2013).

    CAS  Google Scholar 

  54. Zhu Y., Romain C., and Williams C.K.: Sustainable polymers from renewable resources. Nature 540(7633), 354–362 (2016).

    CAS  Google Scholar 

  55. Wang X., Zhang Y., Zhi C., Wang X., Tang D., Xu Y., Weng Q., Jiang X., Mitome M., Golberg D., and Bando Y.: Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4(May), 1–8 (2013).

    Google Scholar 

  56. Zhu Q., Chu Y., Wang Z., Chen N., Lin L., Liu F., and Pan Q.: Robust superhydrophobic polyurethane sponge as a highl y reusable oil-absorption material. J. Mater. Chem. A 1(17), 5386–5393 (2013).

    CAS  Google Scholar 

  57. Ge X., Yang W., Wang J., Long D., Ling L., and Qiao W.: Flexible carbon nanofiber sponges for highly efficient and recyclable oil absorption. RSC Adv. 5(86), 70025–70031 (2015).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Patalano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patalano, A., Villalobos, F., Pena, P. et al. Scaling sorbent materials for real oil-sorbing applications and environmental disasters. MRS Energy & Sustainability 6, 3 (2019). https://doi.org/10.1557/mre.2019.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2019.3

Keywords

Navigation