Skip to main content
Log in

Vacuum thermal dealloying of magnesium-based alloys for fabrication of nanoporous refractory metals

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

A specialized dealloying technique called thermal dealloying was developed over 10 years ago for certain biomedical materials. This method is not widely used for synthesizing nanoporous metals. However, it offers advantages over conventional dealloying processes for fabrication of nanoporous structures, and is highly suitable for refractory metals that may be susceptible to oxidation during chemical/electrochemical dealloying and liquid metal dealloying. In this study, nanoporous structures were successfully fabricated from magnesium-based precursor alloys via sublimation of magnesium at elevated temperature under vacuum conditions. Different refractory metal diffusion rates affect the resulting density and amount of retained magnesium in each nanoporous material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table I.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. J. Wang, Z. Wang, D. Zhao, and C. Xu: Facile fabrication of nanoporous PdFe alloy for nonenzymatic electrochemical sensing of hydrogen peroxide and glucose. Anal. Chim. Acta 832, 34–43 (2014).

    Article  CAS  Google Scholar 

  2. J. Weissmüller and K. Sieradzki: Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull. 43, 14–19 (2018).

    Article  Google Scholar 

  3. M.J. Detisch, T.J. Balk, and D. Bh attacharyya: Synthesis of catalytic nanoporous metallic thin films on polymer membranes. Ind. Eng. Chem. Res. 57, 4420–1429 (2018).

    Article  CAS  Google Scholar 

  4. W. Lucand F. Jiao: Nanoporous metals as electrocatalysts: state-of-the-art, opportunities, and challenges. ACS Catal. 7, 5856–5861 (2017).

    Article  Google Scholar 

  5. X. Zhang and Y. Ding: Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Techno! 3, 2862–2868 (2013).

    Article  CAS  Google Scholar 

  6. E. Seker, Y. Berdichevsky, K.J. Staley, and M.L. Yarmush: Microfabrication-compatible nanoporous gold foams as biomaterials for drug delivery. Adv. Healthc. Mater. 1, 172–176 (2012).

    Article  CAS  Google Scholar 

  7. C. Xu, Y. Liu, F. Su, A. Liu, and H. Qiu: Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosens-ing. Biosens. Bloelectron. 27, 160–166 (2011).

    Article  CAS  Google Scholar 

  8. J.B. Cook, E. Detsi, Y. Liu, Y.-L. Liang, H.-S. Kim, X. Petrissans, B. Dunn, and S.H. Tolbert: Nanoporous tin with a granular hierarchical ligament morphology as a highly stable Li-ion battery anode. ACS Appl. Mater. Interfaces 9, 293–303 (2017).

    Article  CAS  Google Scholar 

  9. I. McCue, E. Benn, B. Gaskey, and J. Erlebacher: Dealloying and dealloyed materials.. Annu. Rev. Mater. Res. 46, 263–286 (2016).

    Article  CAS  Google Scholar 

  10. J. Erlebacher: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, 10 (2004).

    Article  Google Scholar 

  11. K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, and J. Erlebacher: The dealloying critical potential. J. Electrochem. Soc. 149, B370–B377 (2002).

    Article  CAS  Google Scholar 

  12. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki: Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  Google Scholar 

  13. T. Wada, K. Yubuta, A. Inoue, and H. Kato: Dealloying by metallic melt. Mater. Lett. 65, 1076–1078 (2011).

    Article  CAS  Google Scholar 

  14. T. Wada, A.D. Setyawan, K. Yubuta, and H. Kato: Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt. Scripta Mater. 65, 532–535 (2011).

    Article  CAS  Google Scholar 

  15. I. McCue, B. Gaskey, P.-A. Geslin, A. Karma, and J. Erlebacher: Kinetics and morphological evolution of liquid metal dealloying. Acta Mater. 115, 10–23 (2016).

    Article  CAS  Google Scholar 

  16. I. McCue, A. Karma, and J. Erlebacher: Pattern formation during electrochemical and liquid metal dealloying. MRS Bull. 43, 27–34 (2018).

    Article  CAS  Google Scholar 

  17. Q. Zhang, X. Wang, Z. Qi, Y. Wang, and Z. Zhang: A benign route to fabricate nanoporous gold through electrochemical dealloying of Al-Au alloys in a neutral solution. Electrochim. Acta 54, 6190–6198 (2009).

    Article  CAS  Google Scholar 

  18. J. Erlebacher: Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett., 106, 225504 1–4, (2011).

    Article  Google Scholar 

  19. Z. Lu, C. Li, J. Han, F. Zhang, P. Liu, H. Wang, Z. Wang, C. Cheng, L. Chen, A. Hirata, T. Fujita, J. Erlebacher, and M. Chen: Three-dimensional bicontinuous nanoporous materials by vapor phase dealloying. Nat. Commun. 9, 276 (2018).

    Article  Google Scholar 

  20. J. Spradlin, W.-K. Lye, M. Reed, and M.S. Hudson: Nanoporous layers using thermal dealloying. Patent: US 2006/0193889 A1, (2006).

    Google Scholar 

  21. Z. Esen and S. Bor: Processing of titanium foams using magnesium spacer particles. Scr. Mater. 56, 341–344 (2007).

    Article  CAS  Google Scholar 

  22. G. Adamek: Tantalum foams prepared by the thermal dealloying process. Int. J. Refract. Met. Hard Mater 65, 88–93 (2017).

    Article  CAS  Google Scholar 

  23. C. Zhao, Z. Qi, X. Wang, and Z. Zhang: Fabrication and characterization of monolithic nanoporous copper through chemical dealloying of Mg-Cu alloys. Corros. Sci. 51, 2120–2125 (2009).

    Article  CAS  Google Scholar 

  24. L. Wang, N. Briot, P. Swartzentruber, and T.J. Balk: Magnesium alloy precursor thin films for efficient, practical fabrication of nanoporous metals. Metall Mater Trans A 45, 1–5 (2014).

    Article  Google Scholar 

  25. J.N.J. Ong: Oxidation of refractory metals as afunction of pressure, temperature, and time: tungsten in oxygen. J. Electrochem. Soc. 109, 284–288 (1962).

    Article  CAS  Google Scholar 

  26. W.P. Gilbreath: The vapor pressure of Mg (223 °C-385 °C). National Aeronautics and Space Administration - NASA Technical Note (1965).

    Google Scholar 

  27. Y. Sun and T.J. Balk: Evolution of structure, composition, and stress in nanoporous gold thin films with grain-boundary cracks. Metall Mater Trans A 39, 2656–2665 (2008).

    Article  Google Scholar 

  28. G.-R. Xu, Y. Wen, X.-P. Min, W.-H. Dong, A.-P. Tang, and H.-S. Song: Construction of Mn02/3-dimensional porous crack Ni for high-performance supercapacitors. Electrochlm. Acta 186, 133–141 (2015).

    Article  CAS  Google Scholar 

  29. E. Seker, M. Reed, and M. Begley: A thermal treatment approach to reduce microscale void formation in blanket nanoporous gold films. Scr. Mater. 60, 435–438 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support from the Electron Microscopy Center at the University of Kentucky, with special thanks to Nicolas J. Briot for help with FIB preparation of cross sections and EDS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. John Balk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmidou, M., Detisch, M.J., Maxwell, T.L. et al. Vacuum thermal dealloying of magnesium-based alloys for fabrication of nanoporous refractory metals. MRS Communications 9, 144–149 (2019). https://doi.org/10.1557/mrc.2019.15

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2019.15

Navigation