Skip to main content
Log in

Nanoporous magnesium

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In this study, we present freestanding nanoporous magnesium as a novel lightweight material with high potential for structural and functional applications. Thus far, the high reactivity of Mg with oxygen and aqueous media prevented the fabrication of nanoporous Mg. First, in order to synthesize nanoporous Mg, we fabricated a bicontinuous nanocomposite consisting of interpenetrating Mg and non-Mg phases by liquid metal dealloying. The non-Mg phases in the nanocomposite protect Mg against corrosion. Second, we etched the non-Mg phases from the nanocomposite, leaving nanoporous Mg, using HF solution. This process is advantageous because the nanoporous Mg was passivated by a MgF2 layer during the etching. Our approach is very flexible, and we demonstrate that versatile microstructures of the nanoporous Mg—e.g., nanoscale bicontinuous network, hierarchical, or plate-like structures—can be designed for the given needs. More importantly, these nanoporous Mg samples can readily be exposed to air without being harmed by corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 2001, 410, 450–453.

    Article  Google Scholar 

  2. McCue, I.; Benn, E.; Gaskey, B.; Erlebacher, J. Dealloying and dealloyed materials. Annu. Rev. Mater. Res. 2016, 46, 263–286.

    Article  Google Scholar 

  3. Weissmüller, J.; Sieradzki, K. Dealloyed nanoporous materials with interface-controlled behavior. MRS Bull. 2018, 43, 14–19.

    Article  Google Scholar 

  4. Fujita, T.; Guan, P. F.; McKenna, K.; Lang, X. Y.; Hirata, A.; Zhang, L.; Tokunaga, T.; Arai, S.; Yamamoto, Y.; Tanaka, N.; Ishikawa, Y.; Asao, N.; Yamamoto, Y.; Erlebacher, J.; Chen, M. Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 2012, 11, 775–780.

    Article  Google Scholar 

  5. Kramer, D.; Viswanath, R. N.; Weissmüller, J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers. Nano Lett. 2004, 4, 793–796.

    Article  Google Scholar 

  6. Chen, Q.; Ding, Y.; Chen, M. W. Nanoporous metal by dealloying for electrochemical energy conversion and storage. MRS Bull. 2018, 43, 43–48.

    Article  Google Scholar 

  7. Li, R.; Sieradzki, K. Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 1992, 68, 1168–1171.

    Article  Google Scholar 

  8. Detsi, E.; Sellès, M. S.; Onck, P. R.; De Hosson, J. T. M. Nanoporous silver as electrochemical actuator. Scr. Mater. 2013, 69, 195–198.

    Article  Google Scholar 

  9. Shi, S.; Markmann, J.; Weissmüller, J. Actuation by hydrogen electrosorption in hierarchical nanoporous palladium. Philos. Mag. 2017, 97, 1571–1587.

    Article  Google Scholar 

  10. Cheng, C.; Lührs, L.; Krekeler, T.; Ritter, M.; Weissmüller, J. Semiordered hierarchical metallic network for fast and large charge-induced strain. Nano Lett. 2017, 17, 4774–4780.

    Article  Google Scholar 

  11. Wada, T.; Kato, H. Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scr. Mater. 2013, 68, 723–726.

    Article  Google Scholar 

  12. Okulov, I. V.; Okulov, A. V.; Soldatov, I. V.; Luthringer, B.; Willumeit-Römer, R.; Wada, T.; Kato, H.; Weissmüller, J.; Markmann, J. Open porous dealloying-based biomaterials as a novel biomaterial platform. Mater. Sci. Eng. C 2018, 83, 95–103.

    Article  Google Scholar 

  13. Tsuda, M.; Wada, T.; Kato, H. Kinetics of formation and coarsening of nanoporous α-titanium dealloyed with Mg melt. J. Appl. Phys. 2013, 114, 113503.

    Article  Google Scholar 

  14. Okulov, I. V.; Okulov, A. V.; Volegov, A. S.; Markmann, J. Tuning microstructure and mechanical properties of open porous TiNb and TiFe alloys by optimization of dealloying parameters. Scr. Mater. 2018, 154, 68–72.

    Article  Google Scholar 

  15. Wada, T.; Setyawan, A. D.; Yubuta, K.; Kato, H. Nano- to submicro-porous β-Ti alloy prepared from dealloying in a metallic melt. Scr. Mater. 2011, 65, 532–535.

    Article  Google Scholar 

  16. Wada, T.; Yubuta, K.; Inoue, A.; Kato, H. Dealloying by metallic melt. Mater. Lett. 2011, 65, 1076–1078.

    Article  Google Scholar 

  17. Jain, I. P.; Lal, C.; Jain, A. Hydrogen storage in Mg: A most promising material. Int. J. Hydrogen Energy 2010, 35, 5133–5144.

    Article  Google Scholar 

  18. Mohtadi, R.; Mizuno, F. Magnesium batteries: Current state of the art, issues and future perspectives. Beilstein J. Nanotechnol. 2014, 5, 1291–1311.

    Article  Google Scholar 

  19. Cheng, M. Q.; Wahafu, T.; Jiang, G. F.; Liu, W.; Qiao, Y. Q.; Peng, X. C.; Cheng, T.; Zhang, X. L.; He, G.; Liu, X. Y. A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci. Rep. 2016, 6, 24134.

    Article  Google Scholar 

  20. Volkert, C. A.; Lilleodden, E. T.; Kramer, D.; Weissmüller, J. Approaching the theoretical strength in nanoporous Au. Appl. Phys. Lett. 2006, 89, 061920.

    Article  Google Scholar 

  21. Biener, J.; Hodge, A. M.; Hayes, J. R.; Volkert, C. A.; Zepeda-Ruiz, L. A.; Hamza, A. V.; Abraham, F. F. Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 2006, 6, 2379–2382.

    Article  Google Scholar 

  22. Zhang, T. R.; Tao, Z. L.; Chen, J. Magnesium–air batteries: From principle to application. Mater. Horiz. 2014, 1, 196–206.

    Article  Google Scholar 

  23. Kucharczyk, A.; Naplocha, K.; Kaczmar, J. W.; Dieringa, H.; Kainer, K. U. Current status and recent developments in porous magnesium fabrication. Adv. Eng. Mater. 2018, 20, 1700562.

    Article  Google Scholar 

  24. McCue, I.; Gaskey, B.; Geslin, P. A.; Karma, A.; Erlebacher, J. Kinetics and morphological evolution of liquid metal dealloying. Acta Mater. 2016, 115, 10–23.

    Article  Google Scholar 

  25. Geslin, P. A.; Mccue, I.; Gaskey, B.; Erlebacher, J.; Karma, A. Topology-generating interfacial pattern formation during liquid metal dealloying. Nat. Commun. 2015, 6, 8887.

    Article  Google Scholar 

  26. Chiu, K. Y.; Wong, M. H.; Cheng, F. T.; Man, H. C. Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants. Surf. Coat. Technol. 2007, 202, 590–598.

    Article  Google Scholar 

  27. Okulov, I. V.; Bönisch, M.; Kühn, U.; Skrotzki, W.; Eckert, J. Significant tensile ductility and toughness in an ultrafine-structured Ti68.8Nb13.6Co6Cu5.1Al6.5 bi-modal alloy. Mater. Sci. Eng. A 2014, 615, 457–463.

    Article  Google Scholar 

  28. Okulov, I. V.; Pauly, S.; Kühn, U.; Gargarella, P.; Marr, T.; Freudenberger, J.; Schultz, L.; Scharnweber, J.; Oertel, C. G.; Skrotzki, W.; Eckert, J. Effect of microstructure on the mechanical properties of as-cast Ti–Nb–Al–Cu–Ni alloys for biomedical application. Mater. Sci. Eng. C 2013, 33, 4795–4801.

    Article  Google Scholar 

  29. Okulov, I. V.; Bönisch, M.; Okulov, A. V.; Volegov, A. S.; Attar, H.; Ehtemam-Haghighi, S.; Calin, M.; Wang, Z.; Hohenwarter, A.; Kaban, I.; Prashanth, K. G.; Eckert, J. Phase formation, microstructure and deformation behavior of heavily alloyed TiNb- and TiV-based titanium alloys. Mater. Sci. Eng. A 2018, 733, 80–86.

    Article  Google Scholar 

  30. Suryanarayana, C.; Inoue, A. Bulk metallic glasses; CRC Press: Boca Raton, FL, 2011.

    Google Scholar 

  31. Leyens, C.; Peters, M. Titanium and Titanium Alloys; Wiley-VCH Verlag: Weinheim, 2003.

    Book  Google Scholar 

  32. Okulov, I. V.; Wendrock, H.; Volegov, A. S.; Attar, H.; Kühn, U.; Skrotzki, W.; Eckert, J. High strength beta titanium alloys: New design approach. Mater. Sci. Eng. A 2015, 628, 297–302.

    Article  Google Scholar 

  33. Okulov, I. V.; Bönisch, M.; Volegov, A. S.; Shahabi, H. S.; Wendrock, H.; Gemming, T.; Eckert, J. Micro-to-nano-scale deformation mechanism of a Ti-based dendritic-ultrafine eutectic alloy exhibiting large tensile ductility. Mater. Sci. Eng. A 2017, 682, 673–678.

    Article  Google Scholar 

  34. Okulov, I. V.; Sarmanova, M. F.; Volegov, A. S.; Okulov, A.; Kühn, U.; Skrotzki, W.; Eckert, J. Effect of boron on microstructure and mechanical properties of multicomponent titanium alloys. Mater. Lett. 2015, 158, 111–114.

    Article  Google Scholar 

  35. Baker, H. ASM Handbook: Alloy Phase Diagrams; ASM International: Materials Park, 1992.

    Google Scholar 

  36. Vander Voort, G. F. ASM Handbook: Metallography and Microstructures; ASM International: Materials Park, 2004.

    Google Scholar 

  37. Okulov, A. V.; Volegov, A. S.; Weissmüller, J.; Markmann, J.; Okulov, I. V. Dealloying-based metal-polymer composites for biomedical applications. Scr. Mater. 2018, 146, 290–294.

    Article  Google Scholar 

  38. Chen, Q.; Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 2013, 12, 1102–1106.

    Article  Google Scholar 

  39. Muldoon, J.; Bucur, C. B.; Oliver, A. G.; Sugimoto, T.; Matsui, M.; Kim, H. S.; Allred, G. D.; Zajicek, J.; Kotani, Y. Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 2012, 5, 5941–5950.

    Article  Google Scholar 

  40. Okulov, I. V.; Weissmüller, J.; Markmann, J. Dealloying-based interpenetrating-phase nanocomposites matching the elastic behavior of human bone. Sci. Rep. 2017, 7, 20.

    Article  Google Scholar 

Download references

Acknowledgements

I. V. O. thanks Prof. Geslin, Prof. Joo, and Mrs. Sarmanova for valuable discussions. Funding by the Helmholtz Impuls-und Vernetzungsfonds via the Helmholtz-Chinese Academy of Sciences Joint Research Group “Nanoporous transition metals for strength and function–towards a cost-efficient materials base” grant no. HCJRG-315 and by the International Collaboration Center, Institute for Materials Research (ICC-IMR), Tohoku University, Japan are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Vladimirovich Okulov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okulov, I.V., Lamaka, S.V., Wada, T. et al. Nanoporous magnesium. Nano Res. 11, 6428–6435 (2018). https://doi.org/10.1007/s12274-018-2167-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-018-2167-9

Keywords

Navigation