Skip to main content

Advertisement

Log in

Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection

  • 2D Nanomaterials for Healthcare and Lab-on-a-Chip Devices Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Herein we describe the use of a new DNAzyme/graphene hybrid material as a biointerfaced sensing platform for optical detection of pathogenic bacteria. The hybrid consists of a colloidal graphene nanomaterial and an Escherichia coli-activated RNA-cleaving DNAzyme and is prepared via non-covalent self-assembly of the DNAzyme onto the graphene surface. Exposure of the hybrid material to E. coli-containing samples results in the release of the DNAzyme, followed by the cleavage-mediated production of a fluorescent signal. Given that specific RNA-cleaving DNAzymes can be created for diverse bacterial pathogens, direct interfacing of graphene materials with such DNAzymes represents a general and attractive approach for real-time, sensitive, and highly selective detection of pathogenic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention, CDC Estimates of Foodborne Illness in the United States, Website: http://www.cdc.gov/foodborneburden/2011-foodborne-estimates.htmlfoodborneburden/2011-foodborne-estimates.html.

  2. H. Su, Q. Ma, K. Shang, T. Liu, H. Yin, and S. Ai: Gold nanoparticles as colorimetric sensor: a case study on E. coli O157:H7 as a model for Gram-negative bacteria. Sens. Actuators B. 161, 298–303 (2012).

    Article  CAS  Google Scholar 

  3. P. Belgrader, W. Benett, D. Hadley, J. Richards, P. Stratton, R. Mariella, and F. Milanovich: PCR detection of bacteria in seven minutes. Science 284, 449–450 (1999).

    Article  CAS  Google Scholar 

  4. D. Ivnitski, I. Abdel-Hamid, P. Atanasov, and E. Wilkins: Flow-through immunofiltration assay system for rapid detection of E. coli O157:H7. Biosens. Bioelectron. 14, 599–624 (1999).

    Article  CAS  Google Scholar 

  5. R.M. Jarvis and R. Goodacre: Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal. Chem. 76, 40–47 (2004).

    Article  CAS  Google Scholar 

  6. B.K. Oh, W. Lee, B.S. Chun, Y.M. Bae, W.H. Lee, and J.W. Choi: The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 20, 1847–1850 (2005).

    Article  CAS  Google Scholar 

  7. Z.F. Wang, S. Cheng, S.L. Ge, H. Wang, Q.J. Wang, P.G. He, and Y.Z. Fang: Ultrasensitive detection of bacteria by microchip electrophoresis based on multiple-concentration approaches combining chitosan sweeping, field-amplified sample stacking, and reversed-field stacking. Anal. Chem. 84, 1687–1694 (2012).

    Article  CAS  Google Scholar 

  8. N. Nicolaou, Y. Xu, and R. Goodacre: Detection and quantification of bacterial spoilage in milk and pork meat using MALDI-TOF-MS and multivariate analysis. Anal. Chem. 84, 5951–5958 (2012).

    Article  CAS  Google Scholar 

  9. N. Sanvicens, C. Pastells, N. Pascual, and M.P. Marco: Nanoparticle-based biosensors for detection of pathogenic bacteria. Trends Anal. Chem. 28, 1243–1252 (2009).

    Article  CAS  Google Scholar 

  10. P.C. Ray, S.A. Khan, A.K. Singh, D. Senapati, and Z. Fan: Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev. 41, 3193–3209 (2012).

    Article  CAS  Google Scholar 

  11. N. Massad-Ivanir, G. Shtenberg, T. Zeidman, and E. Segal: Construction and characterization of porous SiO2/hydrogel hybrids as optical biosensors for rapid detection of bacteria. Adv. Funct. Mater. 20, 2269–2277 (2010).

    Article  CAS  Google Scholar 

  12. N. Massad-Ivanir, G. Shtenberg, A. Tzur, M.A. Krepker, and E. Segal: Engineering nanostructured porous SiO2 surfaces for bacteria detection via “direct cell capture”. Anal. Chem. 83, 3282–3289 (2011).

    Article  CAS  Google Scholar 

  13. M.A. Hahn, J.S. Tabb, and T.D. Krauss: Detection of single bacterial pathogens with semiconductor quantum dots. Anal. Chem. 77, 4861–4869 (2005).

    Article  CAS  Google Scholar 

  14. R. Edgar, M. McKinstry, J. Hwang, A.B. Oppenheim, R.A. Fekete, G. Giulian, C. Merril, K. Nagashima, and S. Adhya: High-sensitivity bacterial detection using biotin-tagged phage and quantum-dot nanocomplexes. Proc. Natl. Acad. Sci. USA 103, 4841–4845 (2006).

    Article  CAS  Google Scholar 

  15. C. Wang and J. Irudayaraj: Gold nanorod probes for the detection of multiple pathogens. Small 4, 2204–2208 (2008).

    Article  CAS  Google Scholar 

  16. J. Fu, B. Park, and Y. Zhao: Limitation of a localized surface plasmon resonance sensor for Salmonella detection. Sens. Actuators B 141, 276–283 (2009).

    Article  CAS  Google Scholar 

  17. A.K. Singh, D. Senapati, S. Wang, J. Griffin, A. Neely, P. Candice, K.M. Naylor, B. Varisli, J.R. Kalluri, and P.C. Ray: Gold nanorod based selective identification of Escherichia coli bacteria using two-photon Rayleigh scattering spectroscopy. ACS Nano 3, 1906–1912 (2009).

    Article  CAS  Google Scholar 

  18. X. Xu, Y. Chen, H.J. Wei, B. Xia, F. Liu, and N. Li: Counting bacteria using functionalized gold nanoparticles as the light-scattering reporter. Anal. Chem. 84, 9721–9728 (2012).

    Article  CAS  Google Scholar 

  19. W.R. Premasiri, D.T. Moir, M.S. Klempner, N. Krieger, G. Jones, and L.D. Ziegler: Characterization of the surface enhanced Raman scattering (SERS) of bacteria. J. Phys. Chem. B 109, 312–320 (2005).

    Article  CAS  Google Scholar 

  20. W.S. Kuo, C.N. Chang, Y.T. Chang, and C.S. Yeh: Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. 32, 4853–4855 (2009).

    Article  CAS  Google Scholar 

  21. A.J. Kell, G. Stewart, S. Ryan, R. Peytavi, M. Boissinot, A. Huletsky, M. Bergeron, and B. Simard: Vancomycin-modified nanoparticles for efficient targeting and preconcentration of Gram-positive and Gram-negative bacteria. ACS Nano 2, 1777–1788 (2008).

    Article  CAS  Google Scholar 

  22. H. Lee, T.J. Yoon, and R. Weissleder: Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed. 48, 5657–5660 (2009).

    Article  CAS  Google Scholar 

  23. S.P. Ravindranath, L.J. Mauer, C. Deb-Roy, and J. Irudayaraj: Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal. Chem. 81, 2840–2846 (2009).

    Article  CAS  Google Scholar 

  24. H.J. Chung, T. Reiner, G. Budin, C. Min, M. Liong, D. Issadore, H. Lee, and R. Weissleder: Ubiquitous detection of gram-positive bacteria with bioorthogonal magneto fluorescent nanoparticles. ACS Nano 5, 8834–8841 (2011).

    Article  CAS  Google Scholar 

  25. G.A. Zelada-Guillén, J. Riu, A. Düzgün, and F.X. Rius: Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew. Chem., Int. Ed. 48, 7334–7337 (2009).

    Article  CAS  Google Scholar 

  26. M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, and M.C. McAlpine: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  CAS  Google Scholar 

  27. K.E. Sapsford, W.R. Algar, L. Berti, K.B. Gemmill, B.J. Casey, E. Oh, M.H. Stewart, and I.L. Medintz: Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev. 113, 1904–2074 (2013).

    Article  CAS  Google Scholar 

  28. W. R. Algar, D.E. Prasuhn, M.H. Stewart, T.L. Jennings, J.B. Blanco-Canosa, P.E. Dawson, and I.L. Medintz: The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjugate Chem. 22, 825–858 (2011).

    Article  CAS  Google Scholar 

  29. T. Soukka, H. Härmä, J. Paukkunen, and T. Lövgren: Utilization of kinetically enhanced monovalent binding affinity by immunoassays based on multivalent nanoparticle-antibody bioconjugates. Anal. Chem. 73, 2254–2260 (2001).

    Article  CAS  Google Scholar 

  30. J.A. Mann, T. Alava, H.G. Craighead, and W.R. Dichtel: Preservation of antibody selectivity on graphene by conjugation to a tripod monolayer. Angew. Chem. Int. Ed. 52, 3177–3180 (2013).

    Article  CAS  Google Scholar 

  31. L. Chen, X. Zhang, G. Zhou, X. Xiang, X. Ji, Z. Zheng, Z. He, and H. Wang: Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal. Chem. 84, 3200–3207 (2012).

    Article  CAS  Google Scholar 

  32. M. Liu, J. Song, S. Shuang, C. Dong, J.D. Brennan, and Y. Li: A graphene-based biosensing platform based on the release of DNA probes and rolling circle amplification. ACS Nano 8, 5564–5573 (2014).

    Article  CAS  Google Scholar 

  33. X.H. Zhao, R.M. Kong, X.B. Zhang, H.M. Meng, W.N. Liu, W.H. Tan, G.L. Shen, and R.Q. Yu: Graphene-DNAzyme based biosensor for amplified fluorescence “turn-on” detection of Pb2+ with a high selectivity. Anal. Chem. 83, 5062–5066 (2011).

    Article  CAS  Google Scholar 

  34. M.M. Ali, S.D. Aguirre, H. Lazim, and Y. Li: Fluorogenic DNAzyme probes as bacterial indicators. Angew. Chem. Int. Ed. 50, 3751–3754 (2011).

    Article  CAS  Google Scholar 

  35. Z. Shen, Z. Wu, D. Chang, W. Zhang, K. Tram, C. Lee, P. Kim, B.J. Salena, and Y. Li: A catalytic DNA activated by a specific strain of bacterial pathogen. Angew. Chem. Int. Ed. 55, 2431–2434 (2016).

    Article  CAS  Google Scholar 

  36. S. He, L. Qu, Z. Shen, Y. Tan, M. Zeng, F. Liu, Y. Jiang, and Y. Li: Highly specific recognition of breast tumors by an RNA-cleaving fluorogenic DNAzyme probe. Anal. Chem. 87, 569–577 (2015).

    Article  CAS  Google Scholar 

  37. M. Liu, D. Chang, and Y. Li: Discovery and biosensing applications of diverse RNA-cleaving DNAzymes. Acc. Chem. Res. 50, 2273–2283 (2017).

    Article  CAS  Google Scholar 

  38. D. Morrison, M. Rothenbroker, and Y. Li: DNAzymes: selected for applications. Small Methods 2, 1700319 (2018).

    Article  CAS  Google Scholar 

  39. D. Chen, H. Feng, and J.H. Li: Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012).

    Article  CAS  Google Scholar 

  40. S.J. Guo and S.J. Dong: Graphene and its derivative-based sensing materials for analytical devices. J. Mater. Chem. 21, 18503–18516 (2011).

    Article  CAS  Google Scholar 

  41. L.Y. Feng, L. Wu, and X.G. Qu: New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 25, 168–186 (2013).

    Article  CAS  Google Scholar 

  42. N. Varghese, U. Mogera, A. Govindaraj, A. Das, P.K. Maiti, A.K. Sood, and C.N.R. Rao: Binding of DNA nucleobases and nucleosides with graphene. Chem. Phys. Chem. 10, 206–210 (2009).

    Article  CAS  Google Scholar 

  43. E. Morales-Narváez, and A. Merkoçi: Graphene oxide as an optical biosensing platform. Adv. Mater. 24, 3298–3308 (2012).

    Article  CAS  Google Scholar 

  44. S. Kochmann, T. Hirsch, and O.S. Wolfbeis: Graphenes in chemical sensors and biosensors. Trends Anal. Chem. 39, 87–113 (2012).

    Article  CAS  Google Scholar 

  45. R.S. Swathi and K.L. Sebastian: Resonance energy transfer from a dye molecule to graphene. J. Chem. Phys. 129, 054703 (2008).

    Article  CAS  Google Scholar 

  46. R.S. Swathi and K.L. Sebastian: Long range resonance energy transfer from a dye molecule to graphene has (distance)−4 dependence. J. Chem. Phys. 130, 086101 (2009).

    Article  CAS  Google Scholar 

  47. M. Liu, H.M. Zhao, X. Quan, S. Chen, and X.F. Fan: Distance-independent quenching of quantum dots by nanoscale-graphene in self-assembled sandwich immunoassay. Chem. Commun. 2010, 7909–7911 (2010).

    Article  CAS  Google Scholar 

  48. J.W. Liu: Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Phys. Chem. Chem. Phys. 14, 10485–10496 (2012).

    Article  CAS  Google Scholar 

  49. M. Liu, H.M. Zhao, S. Chen, H.T. Yu, and X. Quan: Salt-controlled assembly of stacked-graphene for capturing fluorescence and its application in chemical genotoxicity screening. J. Mater. Chem. 21, 15266–15272 (2011).

    Article  CAS  Google Scholar 

  50. S.H. Mei, Z. Liu, J.D. Brennan, and Y. Li: An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J. Am. Chem. Soc. 125, 412–420 (2003).

    Article  CAS  Google Scholar 

  51. S.D. Aguirre, M.M. Ali, B.J. Salena, and Y. Li: A sensitive DNA enzyme-based fluorescent assay for bacterial detection. Biomolecules 3, 563–577 (2013).

    Article  CAS  Google Scholar 

  52. X. Wang, Y. Du, Y. Li, D. Li, and R. Sun: Fluorescent identification and detection of staphylococcus aureus with carboxymethyl chitosan/CdS quantum dots bioconjugates. J. Biomater. Sci., Polym. Ed. 22, 1881–1893 (2011).

    Article  CAS  Google Scholar 

  53. Y.S. Lin, P.J. Tsai, M.F. Weng, and Y.C. Chen: Affinity capture using vancomycin-cound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal. Chem. 77, 1753–1760 (2005).

    Article  CAS  Google Scholar 

  54. J. Ji, J.A. Schanzle, and M.B. Tabacco: Real-time detection of bacterial contamination in dynamic aqueous environments using optical sensors. Anal. Chem. 76, 1411–1418 (2004).

    Article  CAS  Google Scholar 

  55. W. Zhao, M.M. Ali, M.A. Brook, and Y. Li: Rolling circle amplification: applications in nanotechnology and biodetection with functional nucleic acids. Angew. Chem. Int. Ed. 47, 6330–6337 (2008).

    Article  CAS  Google Scholar 

  56. M.M. Ali, F. Li, Z. Zhang, K. Zhang, D.K. Kang, J.A. Ankrum, X.C. Le, and W. Zhao: Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43, 3324–3341 (2014).

    Article  CAS  Google Scholar 

  57. M. Liu, Q. Zhang, Z. Li, J. Gu, J.D. Brennan, and Y. Li: Programming a topologically constrained DNA nanostructure into a sensor. Nat. Commun. 7, 12074 (2016).

    Article  CAS  Google Scholar 

  58. M. Liu, C.Y. Hui, Q. Zhang, J. Gu, B. Kannan, S. Jahanshahi-Anbuhi, C.D. Filipe, J.D. Brennan, and Y. Li: Target-induced and equipment-free DNA amplification with a simple paper device. Angew. Chem. Int. Ed. 55, 2709–2713 (2016).

    Article  CAS  Google Scholar 

  59. M. Liu, Q. Zhang, J. Gu, J.D. Brennan, and Y. Li: A DNAzyme feedback amplification strategy for biosensing. Angew. Chem. Int. Ed. 56, 6142–6146 (2017).

    Article  CAS  Google Scholar 

  60. M. Liu, Q. Yin, E.M. McConnell, Y. Chang, J.D. Brennan, and Y. Li: DNAzyme feedback amplification: relaying molecular recognition to exponential DNA amplification. Chem. Euro. J. 24, 4473–4479 (2018).

    Article  CAS  Google Scholar 

  61. R. Wang, C. Ruan, D. Kanayeva, K. Lassiter, and Y. Li: TiO2 nanowire bundle microelectrode based impedance immunosensor for rapid and sensitive detection of Listeria monocytogenes. Nano Lett. 8, 2625–2631 (2008).

    Article  CAS  Google Scholar 

  62. M. Labib, A.S. Zamay, O.S. Kolovskaya, I.T. Reshetneva, G.S. Zamay, R.J. Kibbee, S.A. Sattar, T.N. Zamay, and M.V. Berezovski: Aptamer-based viability impedimetric sensor for bacteria. Anal. Chem. 84, 8966–8969 (2012).

    Article  CAS  Google Scholar 

  63. S. Liébana, D.A. Spricigo, M.P. Cortés, J. Barbé, M. Llagostera, S. Alegret, and M.I. Pividori: Phagomagnetic separation and electrochemical magneto-genosensing of pathogenic bacteria. Anal. Chem. 85, 3079–3086 (2013).

    Article  CAS  Google Scholar 

  64. S.M.Z. Hossain, C. Ozimok, C. Sicard, S.D. Aguirre, M.M. Ali, Y. Li, and J.D. Brennan: Multiplexed paper test strip for quantitative bacterial detection. Anal. Bioanal. Chem. 403, 1567–1576 (2012).

    Article  CAS  Google Scholar 

  65. O. Lazcka, F.J. Del Campo, and F.X. Munoz: Pathogen detection: a perspective of traditional methods and biosensors, Biosens. Bioelectron. 22, 1205–1217 (2007).

    Article  CAS  Google Scholar 

  66. F. Postollec, H. Falentin, S. Pavan, J. Combrisson, and D. Sohier: Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol. 28, 848–861 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Natural Sciences and Engineering Council of Canada Discovery Grants (J.D.B. and Y.L.), the Canada Foundation for Innovation and the Ontario Ministry for Research and Innovation. Part of the work was conducted at the McMaster Biointerfaces Institute. J.D.B. holds the Canada Research Chair in Bioanalytical Chemistry and Biointerfaces.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John D. Brennan or Yingfu Li.

Supporting Information

Supplementary material

Supplementary material

The supplementary material for this article can be found at {rs|https://doi.org/10.1557/mrc.2018.97|url|}

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zhang, Q., Brennan, J.D. et al. Graphene-DNAzyme-based fluorescent biosensor for Escherichia coli detection. MRS Communications 8, 687–694 (2018). https://doi.org/10.1557/mrc.2018.97

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.97

Navigation