Skip to main content
Log in

Electrochemical Behavior of Three 90Cu-10Ni Tubes from Different Manufacturers After Immersion in 3.5% NaCl Solution

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Investigation on the electrochemical behavior and corrosion product films formed on three 90Cu-10Ni tubes designated as Tubes A, B and C from three different manufacturers with different service lives were carried out using electrochemical techniques, SEM, XRD and XPS after immersion in 3.5 wt.% NaCl solution. The results of polarization curve measurements showed noticeable decrease in the corrosion current densities (I corr) of the three tubes with immersion time, and the I corr of Tube C was comparatively lower than those of Tubes A and B at early immersion period. EIS measurements revealed duplex film layers on the surface of the samples with the inner film formation occurring at different times for different tubes as the film resistance R f2 revealed the formation of the inner compact layer in Tube C after 15-day immersion and in Tubes A and B after 30 days. Tube C showed better corrosion resistance which is due to early formation of the inner compact oxide film. The XPS analysis revealed Ni enrichment on the surface film of the three samples but Ni depletion as the immersion time is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. N. Acuña, B. Valdez, M. Schorr, and G. Hernández-Duque, Effect of Marine Biofilm on Fatigue Resistance of Austenitic & Stainless Steel, Corros. Rev., 2004, 22(2), p 101–113

    Article  Google Scholar 

  2. R.W. Cahn, P. Hassen, and E.J. Kramer, Materials Science and Technology, A Comprehensive Treatment, Structure and Properties of Nonferrous Alloys, VCH, New York, 1996

  3. J.M. Popplewell, R.J. Hart, and J.A. Ford, The Effect of Iron on the Corrosion Characteristics of 90-10 Cupronickel in Quiescent 3.4%NaCl Solution, Corros. Sci., 1973, 13, p 295–309

    Article  Google Scholar 

  4. W.C. Stewart and F.L. Laque, Corrosion Resisting Characteristics of Iron Modified 90:10 Cupronickel Alloy, Corrosion, 1952, 8, p 259–277

    Article  Google Scholar 

  5. A.M. Beccaria and J. Crousier, Influence of Iron Addition on Corrosion Layer Built up on 70Cu-30Ni Alloy in Seawater, Br. Corros. J., 1991, 26, p 5

    Article  Google Scholar 

  6. S.A. Campbell, G.J.W. Radford, C.D.S. Tuck, and B.D. Barker, Corrosion and Galvanic Compatibility Studies of a High-Strength Copper-Nickel Alloy, Corrosion, 2002, 58(1), p 57–71

    Article  Google Scholar 

  7. S. Colin, E. Beche, R. Berjoan, H. Jolibois, and A. Chambaudet, An XPS and AES Study of the Free Corrosion of Cu-, Ni- and Zn-Based Alloys in Synthetic Sweat, Corros. Sci., 1999, 41(6), p 1051–1065

    Article  Google Scholar 

  8. G. Kear, B.D. Barker, K.R. Stokes, and F.C. Walsh, Electrochemistry of Non-Aged 90-10 Copper-Nickel Alloy (UNS C70610) as a Function of Fluid Flow: Part 2: Cyclic Voltammetry and Characterisation of the Corrosion Mechanism, Electrochim. Acta, 2007, 52(7), p 2343–2351

    Article  Google Scholar 

  9. R.C.N. Liberto, R. Magnabosco, and N. Alonso-Falleiros, Selective Corrosion of 550 °C Aged Cu10Ni-3Al-1.3Fe Alloy in NaCl Aqueous Solution, Corros. Sci., 2011, 53(5), p 1976–1982

    Article  Google Scholar 

  10. R.F. North and M.J. Pryor, The Influence of Corrosion Product Structure on the Corrosion Rate of Cu-Ni Alloys, Corros. Sci., 1970, 10(5), p 297–311

    Article  Google Scholar 

  11. P. Druska and H.H. Strehblow, Surface Analytical Examination of Passive Layers on Cu-Ni Alloys Part II. Acidic Solutions, Corros. Sci., 1996, 38(8), p 1369–1383

    Article  Google Scholar 

  12. W. Schleich, Typical Failures of CuNi 90/10 Seawater Tubing Systems and How to Avoid Them, European Corrosion Congress, 2004, p 1–10

  13. K.M. Wilhelm Schleich, and C. Powell, 5—CuNi 90/10: How to Avoid Typical Failures of Seawater Tubing Systems and Marine Biofouling on Structures, Corrosion Behaviour and Protection of Copper and Aluminium Alloys in Seawater, D. Féron, Ed., Woodhead Publishing, 2007, p 73–94

  14. S.J. Yuan, A.M.F. Choong, and S.O. Pehkonen, The Influence of the Marine Aerobic Pseudomonas Strain on the Corrosion of 70/30 Cu-Ni Alloy, Corros. Sci., 2007, 49(12), p 4352–4385

    Article  Google Scholar 

  15. R.J.K. Wood, S.P. Hutton, and D.J. Schiffrin, Mass Transfer Effects of Non-Cavitating Seawater on the Corrosion of Cu and 70Cu-30Ni, Corros. Sci., 1990, 30, p 1177–1201

    Article  Google Scholar 

  16. A.L. Ma, S.L. Jiang, Y.G. Zheng, and W. Ke, Corrosion Product Film Formed on the 90/10 Copper-Nickel Tube in Natural Seawater: Composition/Structure and Formation Mechanism, Corros. Sci., 2015, 91, p 245–261

    Article  Google Scholar 

  17. X.L. Zhu and T.Q. Lei, Characteristics and Formation of Corrosion Product Films of 70Cu-30Ni alloy in Seawater, Corros. Sci., 2002, 44(1), p 67–79

    Article  Google Scholar 

  18. A. Ma, S. Jiang, Y. Zheng, Z. Yao, W. Ke, and S. Xia, Correlation Between Microstructure and Corrosion Behavior of Two 90Cu10Ni Alloy Tubes, Acta Metall. Sin. (Engl. Lett.), 2014, 27(4), p 730–738

    Article  Google Scholar 

  19. W. Schleich, Application of Copper-Nickel Alloy UNS C70600 for Seawater Service, CORROSION/2005 Annual Conference and Exhibition, NACE International, Houston, 2005, p 1–14

  20. M.S. Parvizi, A. Aladjem, and J.E. Castle, Behaviour of 90-10 Cupronickel in Sea Water, Int. Mater. Rev., 1988, 33(4), p 169–200

    Article  Google Scholar 

  21. W.A. Badawy, M.M. El-Rabiee, N.H. Helal, and H. Nady, Effect of Nickel Content on the Electrochemical Behavior of Cu-Al-Ni Alloys in Chloride Free Neutral Solutions, Electrochim. Acta, 2010, 56(2), p 913–918

    Article  Google Scholar 

  22. A. Barbucci, G. Farne, P. Matteazzi, R. Riccieri, and G. Cerisola, Corrosion Behaviour of Nanocrystalline Cu90Ni10 Alloy in Neutral Solution Containing Chlorides, Corros. Sci., 1998, 41(3), p 463–475

    Article  Google Scholar 

  23. W.A. Badawy, M. El-Rabiee, N.H. Helal, and H. Nady, The Role of Ni in the Surface Stability of Cu-Al-Ni Ternary Alloys in Sulfate-Chloride Solutions, Electrochim. Acta, 2012, 71, p 50–57

    Article  Google Scholar 

  24. F.M. Al-Kharafi and W.A. Badawy, Electrochemical Behaviour of Vanadium in aqueous Solutions of Different pH, Electrochim. Acta, 1997, 42(4), p 579–586

    Article  Google Scholar 

  25. K.M. Ismail and W.A. Badawy, Electrochemical and XPS Investigations of Cobalt in KOH Solutions, J. Appl. Electrochem., 2001, 30(11), p 1303

    Article  Google Scholar 

  26. K.M. Ismail, A.M. Fathi, and W.A. Badaway, The Influence of Ni Content on the Stability of Copper-Nickel Alloys in Alkaline Sulphate Solutions, J. Appl. Electrochem., 2004, 34(8), p 823–831

    Article  Google Scholar 

  27. I. Milošev and M. Metikoš-Huković, The Behaviour of Cu-xNi (x = 10 to 40 wt%) Alloys in Alkaline Solutions Containing Chloride Ions, Electrochim. Acta, 1997, 42, p 1537–1548

    Article  Google Scholar 

  28. R.G. Blundy and M.J. Pryor, The Potential Dependence of Reaction Product Composition on Copper-Nickel Alloys, Corros. Sci., 1972, 12, p 65–75

    Article  Google Scholar 

  29. W.S. Tail, An Introduction to Electrochemical Corrosion Testing for Practicing Engineers and Scientists, University of Wisconsin-Madison, Racine, 1994

    Google Scholar 

  30. I. Thompson and D. Campbell, Interpreting Nyquist Responses from Defective Coatings on Steel Substrates, Corros. Sci., 1994, 36(1), p 187–198

    Article  Google Scholar 

  31. A.M. Alfantazi, T.M. Ahmed, and D. Tromans, Corrosion Behavior of Copper Alloys in Chloride Media, Mater. Des., 2009, 30(7), p 2425–2430

    Article  Google Scholar 

  32. K.M. Ismail, A.M. Fathi, and W.A. Badawy, Electrochemical Behavior of Copper-Nickel Alloys in Acidic Chloride Solutions, Corros. Sci., 2006, 48(8), p 1912–1925

    Article  Google Scholar 

  33. L. Babouri, K. Belmokre, A. Abdelouas, J.F. Bardeau, and Y. El Mendili, The Inhibitive Effect of Cerium Carbonate on the Corrosion of Brass in 3% NaCl Solution, Int. J. Electrochem. Sci, 2015, 10(9), p 7818–7839

    Google Scholar 

  34. K. Chandra, V. Kain, G.K. Dey, P.S. Shetty, and R. Kishan, Failure Analysis of Cupronickel Evaporator Tubes of a Chilling Plant, Eng. Fail. Anal., 2010, 17(2), p 587–593

    Article  Google Scholar 

  35. B. Sun, T.Y. Ye, Q. Feng, J.H. Yao, and M. Wei, Accelerated Degradation Test and Predictive Failure Analysis of B10 Copper-Nickel Alloy under Marine Environmental Conditions, Materials, 2015, 8(9), p 6029–6042

    Article  Google Scholar 

  36. P.K. Chauhan and H.S. Gadiyar, An XPS Study of the Corrosion of Cu-10Ni Alloy in Unpolluted and Polluted Sea-Water: the Effect of FeSO4 Addition, Corros. Sci., 1985, 25(1), p 55–68

    Article  Google Scholar 

  37. J. Mathiyarasu, N. Palaniswamy, and V.S. Muralidharan, Effect of Nickel Content on the Electrochemical Behaviour of Cupronickel Alloy in Neutral Chloride Solutions, Port. Electrochim. Acta, 1999, 17, p 45–56

    Article  Google Scholar 

  38. M. Metikos-Hukovic, R. Babic, I. Skugor, and Z. Grubac, Copper-Nickel Alloys Modified with Thin Surface Films: Corrosion Behaviour in the Presence of Chloride Ions, Corros. Sci., 2011, 53(1), p 347–352

    Article  Google Scholar 

  39. K.D. Efird, Potential-pH Diagrams for 90-10 and 70-30 Cu-Ni in Sea Water, Corrosion, 1975, 31(3), p 77–83

    Article  Google Scholar 

  40. Y.H. Kang, L.L. Luo, X. Tong, D. Starr, G. Zhou, and J.C. Yang, Duplex Oxide Formation During Transient Oxidation of Cu-5%Ni(001) Investigated by In Situ UHV-TEM and XPS, 8th International Symposium on High Temperature Corrosion and Protection of Materials (HTCPM), Les Embiez, 2012

  41. G. Kear, B.D. Barker, K. Stokes, and F.C. Walsh, Electrochemica Corrosion Behaviour of 90-10Cu-Ni Alloy in Chloride-Based Electrolytes, J. Appl. Electrochem., 2004, 34(7), p 659–669

    Article  Google Scholar 

  42. C. Deslouis, B. Tribollet, G. Mengoli, and M.M. Musiani, Electrochemical Behaviour of Copper in Neutral Aerated Chloride Solution. II. Impedance Investigation, J. Appl. Electrochem., 1988, 18(3), p 384–393

    Article  Google Scholar 

  43. R. Babic, M. Metikos-Hukovic, and M. LoncÏar, Impedance and Photoelectrochemical Study of Surface Layers on Cu and Cu-10Ni in Acetate Solution Containing Benzotriazole, Electrochim. Acta, 1999, 44(14), p 2413–2421

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support of National Natural Science Foundation of China (Grant No. Y7F2131111) and the National Environmental Corrosion Platform (2005DKA10400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aili Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekerenam, O.O., Ma, A., Zheng, Y. et al. Electrochemical Behavior of Three 90Cu-10Ni Tubes from Different Manufacturers After Immersion in 3.5% NaCl Solution. J. of Materi Eng and Perform 26, 1701–1716 (2017). https://doi.org/10.1007/s11665-017-2566-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2566-1

Keywords

Navigation