Skip to main content
Log in

The role of solvent charge donation in the stabilization of metal ions in aqueous solution

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We analyze charge density transfer from water to solvated transition metal (TM) ions in different formal oxidation states (FOSs) in aqueous solution by first principles and relate the degree of stabilization of the solvated cations to the charge donation from the water ligands. We find remarkable charge stability on the metal center regardless of FOSs. This effect is similar to what has previously been shown for charges on TM cations in inorganic crystals. This ligand-to-metal charge transfer results in softening of the ligand O-H bonds, which can be used to explain the formation of higher-FOS transition metalates and oxycations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Table I

Similar content being viewed by others

References

  1. G. Galstyan and E.-W. Knapp: Computing pKA values of hexa-aqua transition metal complexes. J. Comput. Chem. 36, 69 (2014).

    Article  Google Scholar 

  2. A.A. Jarzȩcki, A.D. Anbar, and T.G. Spiro: DFT analysis of Fe(H2O)63+ and Fe(H2O)62+ structure and vibrations; implications for isotope fractionation. J. Phys. Chem. A 108, 2726 (2004).

    Article  Google Scholar 

  3. B.M. Marsh, J.M. Voss, J. Zhou, and E. Garand: Coordination structure and charge transfer in microsolvated transition metal hydroxide clusters [MOH]+(H2O)1−4. Phys. Chem. Chem. Phys. 17, 23195 (2015).

    Article  CAS  Google Scholar 

  4. E. Miliordos and S.S. Xantheas: Ground and excited states of the [Fe(H2O)6]2+ and [Fe(H2O)6]3+ clusters: insight into the electronic structure of the [Fe(H2O)6]2+–[Fe(H2O)6]3+ complex. J. Chem. Theory Comput. 11, 1549 (2015).

    Article  CAS  Google Scholar 

  5. S. Varma and S.B. Rempe: Coordination numbers of alkali metal ions in aqueous solutions. Biophys. Chem. 124, 192 (2006).

    Article  CAS  Google Scholar 

  6. S.H.A.M. Leenders, R. Gramage-Doria, B. de Bruin, and J.N.H. Reek: Transition metal catalysis in confined spaces. Chem. Soc. Rev. 44, 433 (2015).

    Article  CAS  Google Scholar 

  7. F. Pan and Q. Wang: Redox species of redox flow batteries: a review. Molecules 20, 20499–20517 (2015).

    Article  CAS  Google Scholar 

  8. Z. Jiang, K. Klyukin, and V. Alexandrov: Ab initio metadynamics study of the VO2+/VO2+ redox reaction mechanism at the graphite edge/water interface. ACS Appl. Mater. Interfaces 10, 20621 (2018).

    Article  CAS  Google Scholar 

  9. H. Raebiger, S. Lany, and A. Zunger: Charge self-regulation upon changing the oxidation state of transition metals in insulators. Nature 453, 763 (2008).

    Article  CAS  Google Scholar 

  10. P.T. Wolczanski: Flipping the oxidation state formalism: charge distribution in organometallic complexes as reported by carbon monoxide. Organometallics 36, 622 (2017).

    Article  CAS  Google Scholar 

  11. P. Karen: Oxidation state, a long-standing issue! Angew. Chem. Int. Ed. 54, 4716 (2015).

    Article  CAS  Google Scholar 

  12. P. Karen, P. McArdle, and J. Takats: Toward a comprehensive definition of oxidation state (IUPAC Technical Report). Pure Appl. Chem. 86, 1017 (2014).

    Article  CAS  Google Scholar 

  13. P. Karen, P. McArdle, and J. Takats: Comprehensive definition of oxidation state (IUPAC recommendations 2016). Pure Appl. Chem. 88, 831 (2016).

    Article  CAS  Google Scholar 

  14. D. Koch and S. Manzhos: On the charge state of titanium in titanium dioxide. J. Phys. Chem. Lett. 8, 1593 (2017).

    Article  CAS  Google Scholar 

  15. D. Koch and S. Manzhos: Addition to “on the charge state of titanium in titanium dioxide”. J. Phys. Chem. Lett. 8, 3945 (2017).

    Article  CAS  Google Scholar 

  16. R.F.W. Bader: Atoms in molecules. Acc. Chem. Res. 18, 9 (1985).

    Article  CAS  Google Scholar 

  17. J.S. Griffith and L.E. Orgel: Ligand-field theory. Q. Rev. Chem. Soc. 11, 381 (1957).

    Article  CAS  Google Scholar 

  18. A. Kramida, Y. Ralchenko, and J. Reader and NIST ASD Team: NIST Atomic Spectra Database (ver. 5.5.6), [Online]. Available: https://physics.nist.gov/asd [June 30, 2018]. National Institute of Standards and Technology, Gaithersburg, MD (2018).

    Google Scholar 

  19. F.A. Cotton, C.K. Fair, G.E. Lewis, G.N. Mott, F.K. Ross, A.J. Schultz, and J.M. Williams: Precise structural characterizations of the hexaaquovanadium(III) and diaquohydrogen ions. X-ray and neutron diffraction studies of [V(H2O)6][H5O2](CF3SO3)4. J. Am. Chem. Soc. 106, 5319 (1984).

    Article  CAS  Google Scholar 

  20. B. Kallies and R. Meier: Electronic structure of 3d [M(H2O)6]3+ ions from ScIII to FeIII: a quantum mechanical study based on DFT computations and natural bond orbital analyses. Inorg. Chem. 40, 3101 (2001).

    Article  CAS  Google Scholar 

  21. T.K. Sham, J.B. Hastings, and M.L. Perlman: Structure and dynamic behavior of transition-metal ions in aqueous solution: an EXAFS study of electron-exchange reactions. J. Am. Chem. Soc. 102, 5904 (1980).

    Article  CAS  Google Scholar 

  22. D. Koch, P. Golub, and S. Manzhos: Stability of charges in titanium compounds and charge transfer to oxygen in titanium dioxide. J. Phys. Conf. Ser. in print (arXiv preprint arXiv:1807.00115) (2018).

    Google Scholar 

  23. G.L. Bertrand, G.W. Stapleton, C.A. Wulff, and L.G. Hepler: Thermochemistry of aqueous pervanadyl and vanadyl ions. Inorg. Chem. 5, 1283 (1966).

    Article  CAS  Google Scholar 

  24. C.J. Ballhausen and H.B. Gray: The electronic structure of the vanadyl Ion. Inorg. Chem. 1, 111 (1962).

    Article  CAS  Google Scholar 

  25. P. Alotto, M. Guarnieri, and F. Moro: Redox flow batteries for the storage of renewable energy: a review. Renewable Sustainable Energy Rev. 29, 325 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education of Singapore (grant no. MOE2015-T2-1-011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei Manzhos.

Supplementary Material

Supplementary material

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1557/mrc.2018.166

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koch, D., Manzhos, S. The role of solvent charge donation in the stabilization of metal ions in aqueous solution. MRS Communications 8, 1139–1144 (2018). https://doi.org/10.1557/mrc.2018.166

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2018.166

Navigation